Многочлены и его стандартный вид объяснение. Многочлены

Члены многочлена являются базовыми единицами многих алгебраических структур. По своему определению, мономы - это либо натуральные числовые значения, либо некие переменные (группы умноженных друг на друга переменных).

Одним из главных математических действий над многочленом является приведение подобных слагаемых. В этом видеоуроке мы рассмотрим более подробно, что собой представляют операции над многочленом.

Так как все члены полинома между собой связаны посредством алгебраического суммирования, то все они именуются слагаемыми. Подобными же являются мономы, имеющие одинаковую буквенную часть, т.е. состоящие из одинаковых переменных. При этом переменные обязательно должны быть в одинаковой степени и при равном числовом коэффициенте. А отдельные числовые значения в многочленах считаются приравненными к подобным слагаемым сами по себе.

Приведение подобных слагаемых подразумевает группирование мономов многочлена так, чтобы получились отдельные части, состоящие полностью из подобных слагаемых. К примеру, рассмотрим данный многочлен:

3а 2 + 2ab 2 - 6 - 3с 3 + 6а 2 - 7ab 2 + 7

Подобными слагаемыми, в данном случае, являются:

  1. Все свободные числовые значения: -6, +7;
  2. Мономы с основанием а в квадрате: +3а 2 , +6а 2 ;
  3. Мономы с основанием аb в квадрате: 2ab 2 , -7ab 2 ;
  4. Мономы с основанием с в кубе: -3с 3 ;

Последняя группа состоит из одного лишь одночлена, не имеющего подобного себе во всем полиноме.

Зачем нужны такие преобразования? Приведение подобных слагаемых помогает упростить многочлен, привести его к элементарному виду, который состоит из меньшего количества мономов. Это легко сделать, сгруппировав те члены, между которыми совершаются алгебраические действия. Главными операциями тут становится вычитание и сложение - они же оказывают эффект перегруппировки и позволяют свободно перемещать одночлены внутри полинома. Поэтому вполне по правилам будет преобразовать вышеуказанный пример так:

6 +7 + 3а 2 +6а 2 + 2ab 2 +(-7ab 2) + (-3с 3) =

9а 2 - 5ab 2 - 3с 3 - 1

Реализовав стандартное вычитание и сложение, получаем упрощенный многочлен. Если первоначальный вариант насчитывал 7 одночленов, то текущий имеет всего 4 члена. Однако возникает закономерный вопрос, что является точным критерием «простоты» многочлена?
С точки зрения алгебраических правил, элементарным, а точнее - стандартным многочленом считается такой полином, у которого все основания одночленов разные, и не являются подобными друг другу. Наш пример:

9а 2 - 5ab 2 - 3с 3 - 1

Состоит из мономов с основаниями а 2 , ab 2 , с 3 , а также, из одного числового значения. Ни один из вышеперечисленных элементов не может быть суммирован или вычтен из другого. Перед нами - стандартный полином, состоящий из четырех членов.

У любого многочлена есть такой критерий, как степень. Степенью полинома, в общем отношении, называется наибольшая степень одночлена в данном многочлене. Стоит усвоить важную деталь - степени многобуквенных (многопеременных) выражений суммируются. Поэтому, общая степень ab 2 равна трем (а в первой степени, b в квадрате). А многочлен вида:

9а 2 - 5ab 2 - 3с 3 - 1

имеет степень, равную трем, так как один из одночленов находится в наибольшей кубической степени.

Степень полиномов принято определять только для стандартного вида. Если многочлен имеет подобные слагаемые, то его сначала приводят к упрощенному виду, а потом вычисляют итоговую степень.

Если многочлен состоит только из одних числовых одночленов, то его стандартная форма приобретает вид единственного числа, являющегося алгебраической суммой всех мономов. Степень данного числа, как многочлена, равна нулю. Если же само число, будучи стандартным видом полинома, приобретает значение «ноль», то его степень считается неопределенной, а сам «нулевой» многочлен называется нуль-полиномом.

На представленном видео также заметно, что любой многочлен имеет, помимо всего прочего, старший коэффициент и свободный член. Старшим коэффициентом называют числовое значение, стоящие перед переменной с наибольшей степенью (той самой, которая задает разряд самому многочлену). А свободный член - это итоговая сумма всех числовых значений многочлена. Если подобных значений в полиноме нет, либо же если они полностью сокращаются, то свободный член принимают равным 0. В примере:

7а 4 - 2в 2 + 5с 3 + 3

старшим коэффициентом является число 7, потому что оно стоит перед переменной, имеющей наибольшую степень (четвертую - и, вместе с тем, весь многочлен имеет четвертую степень). Свободный член, в данном примере, равен 3.

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

Урок на тему: "Понятие и определение многочлена. Стандартный вид многочлена"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Электронное учебное пособие по учебнику Ю.Н. Макарычева
Электронное учебное пособие по учебнику Ш.А. Алимова

Ребята, вы уже изучали одночлены в теме: Стандартный вид одночлена. Определения. Примеры. Давайте повторим основные определения.

Одночлен – выражение, состоящие из произведения чисел и переменных. Переменные могут быть возведены в натуральную степень. Одночлен не содержит ни каких других действий, кроме умножения.

Стандартный вид одночлена – такой вид, когда на первом месте стоит коэффициент (числовой множитель), а за ним степени различных переменных.

Подобные одночлены – это либо одинаковые одночлены, либо одночлены, которые отличаются друг от друга на коэффициент.

Понятие многочлена

Многочлен, как и одночлен, - это обобщенное название математических выражений определенного вида. Мы уже сталкивались с такими обобщениями ранее. Например, "сумма", "произведение", "возведение в степень". Когда мы слышим "разность чисел", нам и в голову не придет мысль об умножении или делении. Также и многочлен - это выражение строго определенного вида.

Определение многочлена

Многочлен - это сумма одночленов.

Одночлены, входящие в состав многочлена, называются членами многочлена . Если слагаемых два, то мы имеем дело с двучленом, еcли три, то с трехчленом. Если слагаемых больше говорят - многочлен.

Примеры многочленов.

1) 2аb + 4сd (двучлен);

2) 4аb + 3сd + 4x (трехчлен);

3) 4а 2 b 4 + 4с 8 d 9 + 2xу 3 ;

3с 7 d 8 - 2b 6 c 2 d + 7xу - 5xy 2 .


Посмотрим внимательно на последние выражение. По определению, многочлен это - сумма одночленов, но в последнем примере мы не только складываем, но и вычитаем одночлены.
Чтобы внести ясность рассмотрим небольшой пример.

Запишем выражение а + b - с (договоримся, что а ≥ 0, b ≥ 0 и с ≥0 ) и ответим на вопрос: это сумма или разность? Сложно сказать.
Действительно, если переписать выражение, как а + b + (-с) , мы получим сумму двух положительных и одного отрицательного слагаемых.
Если посмотреть на наш пример, то мы имеем дело именно с суммой одночленов с коэффициентами: 3, - 2, 7, -5. В математике есть термин "алгебраическая сумма". Таким образом, в определении многочлена имеется в виду "алгебраическая сумма".

А вот запись вида 3а: b + 7с многочленом не является потому, что 3а: b не является одночленом.
Не является многочленом и запись вида 3b + 2а * (с 2 + d), так как 2а * (с 2 + d) - не одночлен. Если раскрыть скобки, то полученное выражение будет являться многочленом.
3b + 2а * (с 2 + d) = 3b + 2ас 2 + 2аd.

Степенью многочлена является наивысшая степень его членов.
Многочлен а 3 b 2 +а 4 имеет пятую степень, так как степень одночлена а 3 b 2 равна 2 + 3= 5, а степень одночлена а 4 равна 4.

Стандартный вид многочлена

Многочлен, не имеющий подобных членов и записанный в порядке убывания степеней членов многочлена, является многочленом стандартного вида.

Многочлен приводят к стандартному виду, что бы убрать излишнюю громоздкость написания и упростить дальнейшие действия с ним.

Действительно, зачем к примеру писать длинное выражение 2b 2 + 3b 2 + 4b 2 + 2а 2 + а 2 + 4 + 4, когда его можно записать короче 9b 2 + 3а 2 + 8 .

Чтобы привести многочлен к стандартному виду, надо:
1. привести все его члены к стандартному виду,
2. сложить подобные (одинаковые или с разным числовым коэффициентом) члены. Данная процедура часто называется приведением подобных .

Пример.
Привести многочлен аba + 2у 2 х 4 х + у 2 х 3 х 2 + 4 + 10а 2 b + 10 к стандартному виду.

Решение.

а 2 b + 2 х 5 у 2 + х 5 у 2 + 10а 2 b + 14= 11а 2 b + 3 х 5 у 2 + 14.

Определим степени одночленов, входящих в состав выражения, и расставим их в порядке убывания.
11а 2 b имеет третью степень, 3 х 5 у 2 имеет седьмую степень, 14 – нулевую степень.
Значит, на первое место мы поставим 3 х 5 у 2 (7 степень), на второе - 12а 2 b (3 степень) и на третье - 14 (нулевая степень).
В итоге получим многочлен стандартного вида 3х 5 у 2 + 11а 2 b + 14.

Примеры для самостоятельного решения

Привести к стандартному виду многочлены.

1) 4b 3 аa - 5х 2 у + 6ас - 2b 3 а 2 - 56 + ас + х 2 у + 50 * (2 а 2 b 3 - 4х 2 у + 7ас - 6);

2) 6а 5 b + 3х 2 у + 45 + х 2 у + аb - 40 * (6а 5 b + 4ху + аb + 5);

3) 4ах 2 + 5bс - 6а - 24bс + хаx 4 x (5ах 6 - 19bс - 6а);

4) 7аbс 2 + 5асbс + 7аb 2 - 6bаb + 2саbс (14аbс 2 + аb 2).

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Похожие статьи