Кто такой л эйлер биографическая справка. Леонард эйлер открытия и вклад в науку

Леонард Эйлер - швейцарский математик и физик, один из основателей чистой математики. Он не только сделал основополагающий и формирующий вклад в геометрию, исчисление, механику и теорию чисел, но также разработал методы решения задач наблюдательной астрономии и применил математику в технике и общественных делах.

Эйлер (математик): краткая биография

Леонард Эйлер родился 15 апреля 1707 г. Он был первенцем Паулюса Эйлера и Маргареты Брукер. Отец являлся выходцем из скромного рода ремесленников, а предками Маргареты Брукер был ряд известных ученых. Паулюс Эйлер в то время служил викарием в церкви святого Якоба. Будучи богословом, отец Леонарда интересовался математикой, и в течение первых двух лет обучения в университете посещал курсы знаменитого Примерно через полтора года после рождения сына семья переехала в Риен, пригород Базеля, где Паулюс Эйлер стал пастором в местном приходе. Там он добросовестно и преданно служил до конца своих дней.

Семья жила в стесненных условиях, особенно после рождения второго ребенка, Анны-Марии, в 1708 году. У четы появятся еще двое детей - Мария Магдалена и Иоганн Генрих.

Первые уроки математики Леонард получил дома от своего отца. Примерно в возрасте восьми лет его отправили в латинскую школу в Базеле, где он жил в доме своей бабушки по материнской линии. Чтобы компенсировать низкое качество школьного образования того времени, отец нанял частного репетитора, молодого богослова по имени Йоханнес Буркхардт, страстного любителя математики.

В октябре 1720 года в возрасте 13 лет Леонард поступил в Базельский университет на философский факультет (обычное дело в то время), где посещал вводные занятия по элементарной математике Иоганна Бернулли, младшего брата почившего к тому времени Якоба.

Молодой Эйлер с таким усердием принялся за учебу, что вскоре привлек внимание преподавателя, который поощрил его изучать более сложные книги собственного сочинения и даже предложил помогать в учебе по субботам. В 1723 году Леонард завершил образование со степенью магистра и прочитал публичную лекцию на латинском языке, в которой сравнил систему Декарта с натуральной философией Ньютона.

Следуя пожеланиям своих родителей, он поступил на богословский факультет, посвящая, однако, большую часть времени математике. В конечном итоге, вероятно, по настоянию Иоганна Бернулли, отец принял как должное предназначение сына делать научную, а не теологическую карьеру.

В 19 лет математик Эйлер осмелился соревноваться с крупнейшими учеными того времени, приняв участие в конкурсе на решение задачи Парижской академии наук об оптимальном размещении корабельных мачт. В тот момент он, никогда в своей жизни не видевший кораблей, первый приз не выиграл, но занял престижное второе место. Через год, когда появилась вакансия на кафедре физики в Базельском университете, Леонард, при поддержке своего наставника Иоганна Бернулли, решил побороться за место, но проиграл из-за своего возраста и отсутствия внушительного перечня публикаций. В некотором смысле ему повезло, так как он смог принять приглашение Санкт-Петербургской академии наук, основанной несколькими годами ранее царем Петром I, где Эйлер нашел более перспективное поприще, позволившее ему развиться в полной мере. Основную роль в этом сыграли Бернулли и два его сына, Никлаус II и Даниэль I, которые активно там работали.

Санкт-Петербург (1727-1741): стремительный взлет

Эйлер провел зиму 1726 года в Базеле, изучая анатомию и физиологию в рамках подготовки к исполнению своих ожидаемых обязанностей в академии. Когда он прибыл в Санкт-Петербург и начал работать адъюнктом, стало очевидным, что он должен полностью посвятить себя математическим наукам. Кроме того, от Эйлера требовалось участвовать в принятии экзаменов в кадетском корпусе и консультировать правительство по различным научно-техническим вопросам.

Леонард легко адаптировался к новым суровым условиям жизни на севере Европы. В отличие от большинства других иностранных членов академии, он сразу же начал изучать русский язык и быстро его освоил, причем в письменной и устной формах. Некоторое время он жил с Даниэлем Бернулли и дружил с Кристианом Гольдбахом, постоянным секретарем академии, известным сегодня по своей до сих пор не решенной проблеме, согласно которой любое четное число, начиная с 4, может быть представлено суммой двух простых чисел. Обширная переписка между ними является важным источником по истории науки в XVIII веке.

Леонард Эйлер, достижения в математике которого мгновенно принесли ему мировую известность и повысили его статус, провел в академии свои наиболее плодотворные годы.

В январе 1734 г. он женился на Катарине Гзель, дочери швейцарского художника, преподававшего вместе с Эйлером, и они переехали в собственный дом. В браке появилось на свет 13 детей, из которых, однако, лишь пятеро достигли совершеннолетия. Первенец, Иоганн Альбрехт, также стал математиком, и позже помогал отцу в его работе.

Эйлера не обошли невзгоды. В 1735 году он серьезно заболел и чуть не умер. К великому облегчению всех он поправился, но через три года снова заболел. На этот раз болезнь стоила ему правого глаза, что отчетливо видно на всех портретах ученого с того времени.

Политическая нестабильность в России, которая наступила после смерти царицы Анны Ивановны, вынудила Эйлера покинуть Санкт-Петербург. Тем более что он имел приглашение от прусского короля Фридриха II приехать в Берлин и помочь создать академию наук там.

В июне 1741 года Леонард вместе со своей женой Катариной, 6-летним Йоханном Альбрехтом и годовалым Карлом выехал из Санкт-Петербурга в Берлин.

Работа в Берлине (1741-1766)

Военная кампания в Силезии отложила планы Фридриха II по учреждению академии. И только в 1746 году она, наконец, была образована. Президентом стал Пьер-Луи Моро де Мопертюи, а Эйлер занял пост директора математического отделения. Но до этого он не оставался без дела. Леонард написал около 20 научных статей, 5 основных трактатов и составил более 200 писем.

Несмотря на то что Эйлер исполнял множество обязанностей - отвечал за обсерваторию и ботанические сады, решал кадровые и финансовые вопросы, занимался продажей альманахов, составивших основной источник дохода академии, не говоря уже о различных технологических и инженерных проектах, его математическая работоспособность не пострадала.

Также он не слишком отвлекался на скандал о первенстве открытия принципа наименьшего действия, разразившийся в начале 1750-х годов, на которое претендовал Мопертюи, что оспаривалось швейцарским ученым и новоизбранным академиком Иоганном Самуэлем Кенигом, говорившем о его упоминании Лейбницем в письме к математику Якобу Герману. Кениг был близок к обвинению Мопертюи в плагиате. Когда его попросили предъявить письмо, он не смог этого сделать, и Эйлеру поручили расследовать данный случай. Не питая симпатий к тот встал на сторону президента и обвинил Кенига в мошенничестве. Точка кипения была достигнута, когда Вольтер, занявший сторону Кенига, написал уничижительную сатиру, высмеявшую Мопертюи и не пощадившую Эйлера. Президент был так расстроен, что вскоре покинул Берлин, и Эйлеру пришлось вести дела, де-факто возглавив академию.

Семья ученого

Леонард стал настолько состоятельным, что приобрел усадьбу в Шарлоттенбурге, западном пригороде Берлина, достаточно большую, чтобы обеспечить уютное проживание своей овдовевшей матери, которую привез в Берлин в 1750 году, сводной сестре и всем своим детям.

В 1754 году его первенец Иоганн Альбрехт по рекомендации Мопертюи в возрасте 20 лет также был избран членом Берлинской академии. В 1762 году его работа о возмущениях орбит комет притяжением планет получила приз Петербургской академии, который он разделил с Алексис-Клод Клеро. Второй сын Эйлера, Карл, изучал медицину в Галле, а третий, Кристоф, стал офицером. Его дочь Шарлотта вышла замуж за голландского аристократа, а ее старшая сестра Хелена в 1777 году - за русского офицера.

Козни короля

Отношения ученого с Фридрихом II не были легкими. Отчасти это обуславливалось заметной разницей в личных и философских склонностях: Фредерик - гордый, уверенный в себе, элегантный и остроумный собеседник, сочувствующий математик Эйлер - скромный, незаметный, приземленный и набожный протестант. Другой, возможно, более важной причиной была обида Леонарда на то, что ему так и не был предложен пост президента Берлинской академии. Эта обида только возросла после ухода Мопертюи и усилий Эйлера удержать учреждение на плаву, когда Фридрих пытался заинтересовать президентским креслом Жана Лерона Д"Аламбера. Последний в самом деле приехал в Берлин, но только чтобы сообщить королю о своей незаинтересованности и рекомендовать Леонарда. Фридрих не только проигнорировал совет Д"Аламбера, но демонстративно объявил себя главой академии. Это, наряду со многими другими отказами короля, в конце концов, привело к тому, что биография математика Эйлера снова делала крутой поворот.

В 1766 году, вопреки препятствиям со стороны монарха, он покинул Берлин. Леонард принял приглашение императрицы Екатерины II вернуться в Санкт-Петербург, где был торжественно встречен вновь.

Опять Санкт-Петербург (1766-1783)

Высокочтимый в академии и обожаемый при дворе Екатерины, великий математик Эйлер занимал чрезвычайно престижную должность и пользовался влиянием, в котором ему так долго отказывали в Берлине. Фактически он играл роль духовного лидера, если не руководителя академии. К сожалению, однако, со здоровьем у него не все складывалось так хорошо. Катаракта левого глаза, начавшая беспокоить его в Берлине, становилась все серьезнее, и в 1771 году Эйлер решился на операцию. Ее следствием стало формирование абсцесса, который почти полностью разрушил зрение.

Позже в том же году во время большого пожара в Санкт-Петербурге его деревянный дом вспыхнул, и почти слепому Эйлеру удалось не сгореть заживо только благодаря героическому спасению Питером Гриммом, мастеровым из Базеля. Чтобы облегчить несчастье, императрица выделила средства на строительство нового дома.

Еще один тяжелый удар постиг Эйлера в 1773 г., когда умерла его жена. Спустя 3 года, чтобы не зависеть от своих детей, он женился во второй раз на ее сводной сестре Саломее-Авигее Гзель (1723-1794).

Несмотря на все эти роковые события, математик Л. Эйлер остался преданным науке. Действительно, около половины его работ было опубликовано или зародилось в Санкт-Петербурге. Среди них два его «бестселлера» - «Письма к немецкой принцессе» и «Алгебра». Естественно, он бы не смог этого сделать без хорошего секретаря и технической помощи, которую ему оказывал, среди прочих, Никлаус Фусс, соотечественник из Базеля и будущий муж внучки Эйлера. Посильное участие в процессе принимал и его сын Иоганн Альбрехт. Последний также выступал в качестве стенографиста сессий академии, на которых ученый, как старейший действительный член, должен был председательствовать.

Смерть

Великий математик Леонард Эйлер умер от инсульта 18 сентября 1783 года во время игры со своим внуком. В день смерти на двух его больших были обнаружены формулы, описывающие полет на воздушном шаре, совершенный 5 июня 1783 в Париже братьями Монгольфье. Идея была развита и подготовлена к изданию сыном Иоганном. Это была последняя статья ученого, опубликованная в 1784-м томе Memoires. Леонард Эйлер и его вклад в математику были настолько велики, что поток статей, ожидавших своей очереди в академических изданиях, еще печатался в течение 50 лет после смерти ученого.

Научная деятельность в Базеле

За короткий базельский период вклад Эйлера в математику составили труды по изохронным и взаимным кривым, а также работа на соискание приза Парижской академии. Но основным трудом на этом этапе стала Dissertatio Physica de sono, поданная в поддержку своего выдвижения на кафедру физики в Базельском университете, о природе и распространении звука, в частности, о скорости звука и его генерации музыкальными инструментами.

Первый санкт-петербургский период

Несмотря на проблемы со здоровьем, которые испытывал Эйлер, достижения в не могут не вызывать удивления. За это время, кроме основных работ по механике, теории музыки, а также военно-морской архитектуре, он написал 70 статей на самые разные темы, от математического анализа и теории чисел до конкретных задач по физике, механике и астрономии.

Двухтомник «Механика» стал началом далеко идущего замысла всеобъемлющего обзора всех аспектов механики, включая механику твердых, гибких и упругих тел, а также жидкостей и небесной механики.

Как видно из записных книжек Эйлера, еще в Базеле он много думал о музыке и музыкальной композиции и планировал написать книгу. Эти планы созрели в Санкт-Петербурге и дали начало труду Tentamen, опубликованному в 1739 году. Произведение начинается с обсуждения природы звука как вибрации частиц воздуха, в том числе его распространения, физиологии слухового восприятия и генерации звука струнными и духовыми инструментами.

Ядро работы составила теория удовольствия, вызываемого музыкой, которую Эйлер создал, присвоив интервалу тона, аккорду или их последовательности численные значения, степени, составляющие «приятность» данной музыкальной конструкции: чем ниже степень, тем выше удовольствие. Работа сделана в контексте любимой автором диатонической хроматической темперации, но также дана полная математическая теория темпераций (как античных, так и современных). Эйлер не был единственным, кто пытался превратить музыку в точную науку: Декарт и Мерсенн сделали то же самое до него, как и Д"Аламбер и многие другие после него.

Двухтомник Scientia Navalis - второй этап его разработки рациональной механики. В книге изложены принципы гидростатики и развивается теория равновесия и колебаний трёхмерных тел, погруженных в воду. Работа содержит зачатки механики твердых тел, которая позже кристаллизуется в книге Theoria Motus corporum solidorum seu rigidorum, третьем крупном трактате по механике. Во втором томе теория применяется к судам, кораблестроению и навигации.

Невероятно, но Леонард Эйлер, достижения в математике которого в этот период были впечатляющими, имел время и выносливость, чтобы написать 300-страничный труд по элементарной арифметике для использования в гимназиях Санкт-Петербурга. Как повезло тем детям, которым преподавал великий ученый!

Берлинские работы

Помимо 280 статей, многие из которых были весьма важными, в этот период математик Леонард Эйлер создал целый ряд эпохальных научных трактатов.

Задача о брахистохроне - поиск пути, по которому точечная масса движется под действием силы тяжести из одной точки в вертикальной плоскости к другой за кратчайшее время - является ранним примером задачи, созданной Иоганном Бернулли, по поиску функции (или кривой), которая оптимизирует аналитическое выражение, зависящее от этой функции. В 1744-м, а затем в 1766-м Эйлер значительно обобщает эту проблему, создав совершенно новый раздел математики - «вариационное исчисление».

Два меньших трактата, о траекториях планет и комет и по оптике, появились примерно в 1744 и 1746 гг. Последний представляет исторический интерес, поскольку он начал дискуссию о ньютоновых частицах и волновой теории света Эйлера.

В знак уважения к своему нанимателю, королю Фридриху II, Леонард перевел важную работу по баллистике англичанина Бенджамина Робинса, хотя тот и несправедливо критиковал его «Механику» 1736 г. Он добавил, однако, так много комментариев, пояснительных записок и исправлений, что в результате книга «Артиллерия» (1745) по объему в 5 раз превысила оригинал.

В двухтомнике «Введение в анализ бесконечно малых» (1748) математик Эйлер позиционирует анализ как независимую дисциплину, обобщает свои многочисленные открытия в области бесконечных рядов, бесконечных произведений и непрерывных дробей. Он развивает четкую концепцию функции действительных и комплексных значений и подчеркивает фундаментальную роль в анализе числа е, экспоненциальной и логарифмической функций. Второй том посвящен аналитической геометрии: теории алгебраических кривых и поверхностей.

«Дифференциальное исчисление» также состоит из двух частей, первая из которых посвящена исчислению различий и дифференциалов, а вторая - теории степенных рядов и суммирующих формул с большим количеством примеров. Здесь, кстати, содержится первый напечатанный ряд Фурье.

В трехтомном «Интегральном исчислении» математик Эйлер рассматривает квадратуры (т. е. бесконечные итерации) элементарных функций и техники приведения к ним линейных дифференциальных уравнений, подробно описывает теорию линейных дифференциальных уравнений второго порядка.

На протяжении всех лет в Берлине и позднее Леонард занимался геометрической оптикой. Его статьи и книги по этой теме, в том числе монументальный трехтомник «Диоптрика», составили семь томов Opera Omnia. Центральной темой этой работы являлось улучшение оптических приборов, таких как телескопы и микроскопы, способы устранения хроматических и сферических аберраций через сложную систему линз и заполняющих жидкостей.

Эйлер (математик): интересные факты второго санкт-петербургского периода

Это было наиболее продуктивное время, в течение которого ученый опубликовал более 400 работ по уже упомянутым темам, а также по геометрии, теории вероятностей и статистике, картографии, и даже о пенсионных фондах для вдов и о сельском хозяйстве. Из них можно выделить три трактата по алгебре, теории Луны и военно-морской науке, а также по теории чисел, натуральной философии и диоптрике.

Здесь появился очередной его «бестселлер» - «Алгебра». Имя математика Эйлера украсило эту 500-страничную работу, которая написана с целью обучить данной дисциплине абсолютного новичка. Он диктовал книгу молодому подмастерью, которого привез с собой из Берлина, и когда труд был закончен, тот во всем разобрался и был в состоянии с большой легкостью решать заданные ему алгебраические задачи.

«Вторая теория судов» также предназначалась для людей, не имеющих познаний в математике, а именно - матросов. Не удивительно, что благодаря необыкновенному дидактическому мастерству автора работа оказалась очень успешной. Министр морского флота и финансов Франции Анн-Робер Тюрго предложил королю обязать всех студентов морских, а также артиллерийских школ изучать трактат Эйлера. Весьма вероятно, что одним из тех студентов оказался Наполеон Бонапарт. Король даже заплатил математику 1000 рублей за привилегию переиздания работы, и императрица Екатерина II, не желая уступать королю, удвоила сумму, и великий математик Леонард Эйлер дополнительно получил 2000 рублей!

(нем. Leonhard Euler МФА: [??l?]); 15 апреля 1707, Базель, Швейцария – 18 сентября 1783, Санкт-Петербург, Россия), выдающийся швейцарский математик и физик, который провел большую часть своей жизни в России и Германии. Традиционное написание "Эйлер" происходит от русск.
Эйлер совершил важные открытия в таких разных областях математики, как математический анализ и теория графов. Он также ввел большую часть современной математической терминологии и обозначений, в частности в математическом анализе, как, например, понятие математической функции. Эйлер известен также благодаря своим работам в механике, динамике жидкости, оптике и астрономии, других прикладных науках.
Эйлер считается выдающимся математиком 18-го века, а возможно даже всех времен. Он также является одним из самых плодотворных – сборник всех его произведений заняла бы 60-80 томов. Влил Эйлера на математику описывает высказывания "Читайте Эйлера, читайте Эйлера, он является мэтром всех нас", которое приписывается Лапласу (фр. Lisez Euler, lisez Euler, c"est notre maitre a tous).
Эйлер увековечен в шестой серии швейцарских 10 франков и на многочисленных швейцарских, немецких и российских почтовых марках. В его честь назван астероидом 2002 Эйлер. Он также отмечен лютеранской церковью в церковном календаре (24 мая) – Эйлер был набожным христианином, верил в библейскую непогрешимость, решительно выступал против выдающихся атеистов своего времени.
http://сайт/uploads/posts/2011-02/1297963607_1back%29.jpeg Швейцарские 10 франков с портретом молодого Эйлера 1707 в немецкоязычной части Швейцарии в семье священника Пауля Эйлера (Paul Euler) и Маргареты Брукнер (Margarethe Bruckner) родился первый сын – Леонард Эйлер. В родном Базеле он посещает гимназию и одновременно берет частные уроки у математика Иоганнеса Буркгардта (Johannes Burckhardt).
С 1720 года учится в университете Базеля и слушает лекции в Иоганна Бернулли. В 1723 получает научное звание магистра за сравнение латыни философий Ньютона и Декарта. От своего замысла изучать также и теологию отказывается в 1725. А 17 мая 1727 по приглашению Даниил Бернулли принимает профессуру в университете Санкт-Петербурга, которая принадлежала к тому Николаусу II Бернулли, умершему в 1726 году. Здесь он знакомится с Кристианом Гольдбаха (Christian Goldbach). 1730 Эйлер получает профессуру физики, а 1733 получает место профессора математики, которое до этого принадлежало Даниэлю Бернулли.
В последующие годы Эйлер постепенно теряет зрение, в 1740 году он ослеп на один глаз.
Мемориальная доска на доме в Берлине, где проживал Эйлер В 1741 принимает приглашение короля Пруссии Фридриха Великого возглавить Берлинскую академию и восстановить ее репутацию, которая находилась в упадке после предыдущего руководителя – придворного шута. Эйлер продолжает переписываться с Кристианом Гольдбаха. После 25 лет в Берлине Эйлер возвращается 1766 в Санкт-Петербург. Причиной этого была также неприязнисть и унижение со стороны деспотического короля.
1771 Эйлер окончательно слепнет, несмотря на это почти половина его трудов возникла во время второго пребывания в Санкт-Петербурге. В этом ему помогают оба сына Иоганн Альбрехт (Johann Albrecht) и Кристоф (Christoph).
1783 Эйлер умирает вследствие кровоизлияния в мозг.
портрет Леонарда Эйлера, выполненный Эмануэлем Гандманном в 1753 г. (находится в музее искусства г. Базель) Эйлер является автором 866 научных публикаций, в частности в областях математического анализа, дифференциальной геометрии, теории чисел, теории графов, приближенных вычисления, небесной механики, математической физики, оптики, баллистики, кораблестроении, теории музыки, оказали значительное влияние на развитие науки. Именно он ввел большинство математических понятий и символов в современную математику, например: f (x), e, ? (пи), мнимая единица i, символ суммы? и многие другие.
Математические обозначения
Эйлер ввел и популяризовал в своих широко распространенных в то время учебниках несколько обозначений. В частности, он представил концепцию функции и впервые написал f (x), чтобы обозначить функцию f примененную к аргументу x. Он также ввел современные обозначения тригонометрических функций, букву e качестве основы натурального логарифма (сейчас известная как число Эйлера), греческую букву? для суммы и букву i, чтобы обозначить мнимую единицу. Использование греческой буквы ?, чтобы обозначить отношение длины окружности к ее диаметру было также спопуляризоване Эйлером, хотя не было им придумано.
Анализ
В восемнадцатом веке происходил значительный прогресс анализа бесконечно малых. Благодаря влиянию Бернулли (друзей семьи Эйлера), исследования в этом направлении стали основными в работах Эйлера. Хотя некоторые из доказательств Эйлера не являются приемлемыми по современным стандартам математической строгости, его идеи привели к значительному прогрессу. Эйлер хорошо известен в анализе с частого использования и развития степенных рядов, выражающих функцию в виде суммы бесконечного множества степенных функций, на пример,

Именно Эйлер прямо доказал расклад в ряд экспоненты и арктангенс (косвенное доказательство через обратные степенные ряды дана Ньютоном и Лейбницем между 1670 и 1680 годами). Использования им степенных рядов позволило решить в 1735 году знаменитую Базельскую проблему, (более строгое доказательство было им совершено в 1741 году):

Геометрический смысл формулы Эйлера Эйлер начал использование в аналитических доказательствах экспоненты и логарифмов. Ему удалось разложить в степенной ряд логарифмическую функцию и, посредством этого расписания, определить логарифмы для отрицательных и комплексных чисел. Он также расширил множество определения экспоненциальной функции на комплексные числа, и обнаружил связь экспоненты с тригонометрическими функциями. Формула Эйлера утверждает, что для любого действительного числа x выполняется равенство:

Частным случаем формулы Эйлера при x = ? есть тождество Эйлера, связывающее пять фундаментальных математических констант:

e i ? + 1 = 0,

Названной Ричардом Фейнманом "самой чудесной математической формулой".. В 1988 году читатели журнала Mathematical Intelligencer в голосовании назвали ее "красивой математической формулой всех времен".
Следствием Формулы Эйлера формула Муавра.
Кроме того, Эйлер разработал теорию специальных трансцендентных функций введя гамма-функцию и представил новые методы решения уравнения четвертой степени. Он также нашел способ вычисления интегралов с комплексными пределами, опережали развитие современного комплексного анализа, и начал вариационное исчисление, в том числе получил его известный результат, уравнения Эйлера-Лагранжа.
Эйлер также был пионером в использовании аналитических методов решения задач теории чисел. Таким образом, он объединил две разрозненные области математики и внедрил новую область исследований, аналитическую теорию чисел. Началом было созданием Эйлером теории гипергеометрических рядов, Q-Series, гиперболических тригонометрических функций и аналитическая теория обобщенных дробей. Например, он доказал бесконечность простых чисел с помощью разногласия гармонического ряда, использовал методы анализа, чтобы узнать о распределении простых чисел. Эйлеровы работы в этой области привели к появлению теоремы о распределении простых чисел.
Теория чисел
Интерес Эйлера теорией чисел можно объяснить влиянием Христиана Гольдбаха, вторая из Санкт-Петербургской Академии. Многие ранних работ Эйлера по теории чисел базировалось на работах Пьера Ферма. Эйлер разработал некоторые идеи Ферма, и опроверг некоторые из его предположений.
Эйлер связал характер распределения простых чисел с идеями по анализу. Он доказал, что сумма обратных к простым числам расходится. В этот способ он обнаружил связь между дзета-функцией Римана и простыми числами, результат известен как "тождество Эйлера в теории чисел".
Эйлер доказал тождества Ньютона, малую теорему Ферма, теорему Ферма о суммах двух квадратов, сделал значительный вклад в теорему Лагранжа о четырех квадраты. Он также изобрел функцию Эйлера? (N), равное числу положительных чисел, не превышающих натурального N и которые являются взаимно простые с N. Используя свойства этой функции, он обобщил малую теорему Ферма к тому, что сейчас называется теоремой Эйлера. Он внес значительный вклад в теорию совершенных чисел, которой математики были очарованы со времен Евклида. Эйлер также достиг прогресса в направлении теоремы о распределении простых чисел и выдвинул гипотезу квадратичной взаимности. Эти два понятия рассматриваются в качестве основных теорем теории чисел, а его идеи подготовили почву для работ Гаусса.
До 1772 года Эйлер доказал, что 2 31 – 1 = 2147483647 является числом Мерсенна. Правдоподобно, это число было наибольшим известным простым до 1867 года.
Теория графов
В 1736 году, Эйлер решил проблему, известную как Семь мостов Кенигсберга. Город Кенигсберг (сегодня Калининград) в Пруссии расположен на реке Преголя и включает два больших острова, которые были связаны друг с другом и с материком семью мостами. Проблема заключается в том, можно найти путь, который проходит каждым мостом ровно один раз и возвращается к исходной точке. Ответ отрицательный: нет цикла Эйлера. Это утверждение считается первой теоремой теории графов, в частности, в теории планарных графов.
Эйлер также доказал формулу V E + F = 2, что связывает число вершин, ребер и граней выпуклого многогранника, а следовательно, и планарных графов (для планарных графов V E + F = 1). Левая сторона формулы, известная теперь как эйлерова характеристика графа (или иного математического объекта), связанная с понятием рода поверхности.
Изучение и обобщение этой формулы, в частности Коши и L"Huillier, были началами топологии.
Прикладная математика
Среди наибольших успехов Эйлера были аналитические решения практических задач, описание многочисленных применений чисел Бернулли, рядов Фурье, диаграмм Венна (известные также как круги Эйлера), чисел Эйлера, констант е и?, цепных дробей и интегралов.
Он соединил дифференциальное исчисление Лейбница с ньютоновской методом флюксий, и создал инструменты, которые сделали применение анализа к физическим проблемам проще. Он добился больших успехов в совершенствовании численное приближение интегралов, изобрел то, что в настоящее время известно как метод Эйлера и формула Эйлера-Маклорена. Он также способствовал использованию дифференциальных уравнений, в частности, вводя постоянную Эйлера-Маскерони:

Одним из самых необычных интересов Эйлера было применение математических идей в музыке. В 1739 году он написал Tentamen novae theoriae musicae, надеясь наконец включить музыкальную теорию к математике. Эта часть его работы, однако, не получила широкого внимания и была однажды названа "слишком математической для музыкантов и очень музыкальной для математиков".
Физика
Леонард Эйлер внес значительный вклад в развитие механики, в частности в решение задачи о вращении твердого тела. Подход Эйлера связан с понятиями Эйлеровы углов и кинематических уравнений Эйлера. В 1757 Эйлер опубликовал мемуар «Principes generaux du mouvement des fluides» (Общие принципы движения флюидов), в котором записал уравнения движения несжимаемой идеальной жидкости, получившие название уравнений Эйлера. Результатом работы над задачей о деформации бруса при погрузке стали уравнения Эйлера-Бернулли, которые впоследствии нашли применение в инженерной науке, в частности при проектировании мостов.
Эйлер работал над общими проблемами механики, развивая принцип Мопертюи. Уравнения лагранжевой механики часто называют уравнениями Эйлера-Лагранжа.
Эйлер применял разработаны математические методы для решения проблем небесной механики. Его труды в этой области получили несколько наград Парижской академии наук. Среди его достижений определения с большой точностью орбит комет и других небесных тел, объяснения природы комет, расчет параллакса Солнца. Расчеты Эйлера стали значительным вкладом в розвробку точных таблиц широт.
Важное значение для своего времени имел вклад Эйлера в оптику. Он отрицал господствующую тогда корпускулярную теорию света Ньютона. Труды Эйлера протяжении 1740-х годов помогли утвердиться волновой теории света Христиана Гюйгенса.
Астрономия
Большая часть астрономических сочинений Эйлера посвящена актуальным в то время вопросам небесной механики, а также сферической, практической и мореходной астрономии, теории приливов, теории астрономического климата, рефракции света в земной атмосфере, параллакса и аберрации, вращению Земли. В области небесной механики Эйлер внес существенный вклад в теорию возмущенного движения. Еще в 1746 он вычислил возбуждения Луны и опубликовал лунные таблицы. Одновременно с А. К. Клеро и Ж.Л.Д "Аламбером и независимо от них Эйлер разрабатывал общие теории движения Луны, в которых он исследовался с весьма высокой точностью. Первая теория, в которой применен метод разложения искомых координат в ряды по степеням малых параметров и дана частичная разработка аналитического метода вариации элементов орбиты, была опубликована в 1753. Эта теория была использована Т. И. Майером при составлении высокоточных таблиц движения Луны. Совершенная аналитическая теория, в которой дано численный развитие метода и вычислены таблицы, изложена в работе, изданной в Петербурге в 1772 на латинском языке. Ее сокращенный перевод на русский язык под названием «Новая теория движения Луны» был выполнен А. Н. Крыловым и издан в 1934. Вычислительные методы, предложенные Эйлером для получения точных эфемерид Луны и планет, в частности введенные им прямоугольные равномерно вращаются оси координат, были широко использованы впоследствии Дж.В.Гиллом. По выражению М. Ф. Субботина, они стали одним из важнейших источников дальнейшего прогресса всей небесной механики. Широкие возможности для применения этих методов возникли с появлением ЭВМ. Современная точная и полная теория движения Луны была создана в 1895-1908 Е. В. Брауном. Работы Эйлера и Гилла дали начало общей теории нелинейных колебаний, играющего большую роль в современных науке и технике.
Важное значение для астрономии имела работа Эйлера «Об улучшении объективного стекла зрительных труб» (1747), в которой он показал, что, комбинируя две линзы из стекла с различной преломляющей способностью, можно создать ахроматический объектив. Под влиянием работы Эйлера первый объектив такого рода был изготовлен английском оптиком Дж. Доллонд в 1758.

Входит в первую пятерку величайших математиков всех времен и народов. Родился в семье пастора и провел детство в близлежащем селении, где его отец получил приход. Здесь на лоне сельской природы, в благочестивой обстановке скромного пасторского дома Леонард получил начальное воспитание, наложившее глубокий отпечаток на всю его последующую жизнь и мировоззрение.


Обучение в гимназии в те времена было непродолжительным. Осенью 1720 тринадцатилетний Эйлер поступил в Базельский университет, через три года окончил низший – философский факультет и записался, по желанию отца, на теологический факультет. Летом 1724 на годичном университетском акте он прочел по-латыни речь о сравнении картезианской и ньютонианской философии. Проявив интерес к математике, он привлек к себе внимание Иоганна Бернулли. Профессор стал лично руководить самостоятельными занятиями юноши и вскоре публично признал, что от проницательности и остроты ума юного Эйлера он ожидает самых больших успехов.

Еще в 1725 Леонард Эйлер выразил желание сопровождать сыновей своего учителя в Россию, куда они были приглашены в открывавшуюся тогда – по воле Петра Великого – Петербургскую Академию наук. На следующий год получил приглашение и сам. Покинул Базель весной 1727 и после семинедельного путешествия прибыл в Петербург. Здесь он был зачислен сначала адъюнктом по кафедре высшей математики, в 1731 стал академиком (профессором), получив кафедру теоретической и экспериментальной физики, а затем (1733) кафедру высшей математики.

Сразу же по приезде в Петербург он полностью погрузился в научную работу и тогда же поразил всех плодотворностью своей деятельности. Многочисленные его статьи в академических ежегодниках, первоначально посвященные преимущественно задачам механики, скоро принесли ему всемирную известность, а позже способствовали и славе петербургских академических изданий в Западной Европе. Непрерывный поток сочинений Эйлера печатался с тех пор в трудах Академии в течение целого века.

Наряду с теоретическими исследованиями, Эйлер уделял много времени и практической деятельности, исполняя многочисленные поручения Академии наук. Так, он обследовал разнообразные приборы и механизмы, участвовал в обсуждении способов подъема большого колокола в Московском кремле и т.п. Одновременно он читал лекции в академической гимназии, работал в астрономической обсерватории, сотрудничал в издании Санкт-Петербургских ведомостей, вел большую редакционную работу в академических изданиях и пр. В 1735 Эйлер принял участие в работе Географического департамента Академии, внеся большой вклад в развитие картографии России. Неутомимая работоспособность Эйлера не была прервана даже полной потерей правого глаза, постигшей его в результате болезни в 1738.

Осенью 1740 внутренняя обстановка в России осложнилась. Это побудило Эйлера принять приглашение прусского короля, и летом 1741 он переехал в Берлин, где вскоре возглавил математический класс в реорганизованной Берлинской Академии наук и словесности. Годы, проведенные Эйлером в Берлине, были наиболее плодотворными в его научной деятельности. На этот период падает и его участие в ряде острых философско-научных дискуссий, в том числе о принципе наименьшего действия. Переезд в Берлин не прервал, однако, тесных связей Эйлера с Петербургской Академией наук. Он по-прежнему регулярно посылал в Россию свои сочинения, участвовал во всякого рода экспертизах, обучал посланных к нему из России учеников, подбирал ученых на замещение вакантных должностей в Академии и выполнял много других поручений.

Религиозность и характер Эйлера не соответствовали окружению «вольнодумного» Фридриха Великого. Это привело к постепенному осложнению отношений между Эйлером и королем, который при этом отлично понимал, что Эйлер является гордостью Королевской Академии. В последние годы своей берлинской жизни Эйлер исполнял фактически обязанности президента Академии, но должности этой так и не получил. В итоге летом 1766, несмотря на сопротивление короля, Эйлер принял приглашение Екатерины Великой и вернулся в Петербург, где оставался затем до конца своей жизни.

В том же 1766 Эйлер почти полностью потерял зрение и на левый глаз. Однако это не помешало продолжению его деятельности. С помощью нескольких учеников, писавших под его диктовку и оформлявших его труды, полуслепой Эйлер подготовил в последние годы своей жизни еще несколько сотен научных работ.

В начале сентября 1783 Эйлер почувствовал легкое недомогание. 18 сентября он еще занимался математическими исследованиями, но неожиданно потерял сознание и, по меткому выражению панегириста, «прекратил вычислять и жить».

Похоронен на Смоленском лютеранском кладбище в Петербурге, откуда его прах перенесен осенью 1956 в некрополь Александро-Невской лавры.

Научное наследие Леонарда Эйлера колоссально. Ему принадлежат классические результаты в математическом анализе. Он продвинул его обоснование, существенно развил интегральное исчисление, методы интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных. Эйлеру принадлежит знаменитый шеститомный курс математического анализа, включающий Введение в анализ бесконечно малых, Дифференциальное исчисление и Интегральное исчисление (1748–1770). На этой «аналитической трилогии» учились многие поколения математиков всего мира.

Эйлер получил основные уравнения вариационного исчисления и определил пути дальнейшего его развития, подведя главные итоги своих исследований в этой области в монографии Метод нахождения кривых линий, обладающих свойствами максимума или минимума (1744). Значительны заслуги Эйлера в развитии теории функций, дифференциальной геометрии, вычислительной математики, теории чисел. Двухтомный курс Эйлера Полное руководство по алгебре (1770) выдержал около 30 изданий на шести европейских языках.

Фундаментальные результаты принадлежат Леонарду Эйлеру в рациональной механике. Он впервые дал последовательно аналитическое изложение механики материальной точки, рассмотрев в своей двухтомной Механике (1736) движение свободной и несвободной точки в пустоте и в сопротивляющейся среде. Позже Эйлер заложил основы кинематики и динамики твердого тела, получив соотве

тствующие общие уравнения. Итоги этих исследований Эйлера собраны в его Теории движения твердых тел (1765). Совокупность уравнений динамики, представляющих законы количества движения и момента количества движения, крупнейший историк механики Клиффорд Трусделл предложил называть «Эйлеровыми законами механики».

В 1752 была опубликована статья Эйлера Открытие нового принципа механики, в которой он сформулировал в общем виде ньютоновы уравнения движения в неподвижной системе координат, открыв путь для изучения механики сплошных сред. На этой основе он дал вывод классических уравнений гидродинамики идеальной жидкости, найдя и ряд их первых интегралов. Значительны также его работы по акустике. При этом ему принадлежит введение как «эйлеровых» (связанных с системой отсчета наблюдателя), так и «лагранжевых» (в сопутствующей движущемуся объекту системе отсчета) координат.

Замечательны многочисленные работы Эйлера по небесной механике, среди которых наиболее известна его Новая теория движения Луны (1772), существенно продвинувшая важнейший для мореходства того времени раздел небесной механики.

Наряду с общетеоретическими исследованиями, Эйлеру принадлежит ряд важных работ по прикладным наукам. Среди них первое место занимает теория корабля. Вопросы плавучести, остойчивости корабля и других его мореходных качеств были разработаны Эйлером в его двухтомной Корабельной науке (1749), а некоторые вопросы строительной механики корабля – в последующих работах. Более доступное изложение теории корабля он дал в Полной теории строения и вождения кораблей (1773), которая использовалась в качестве практического руководства не только в России.

Значительный успех имели комментарии Эйлера к Новым началам артиллерии Б.Робинса (1745), содержавшие, наряду с другими его сочинениями, важные элементы внешней баллистики, а также разъяснение гидродинамического «парадокса Даламбера». Эйлер заложил теорию гидравлических турбин, толчком для развития которой явилось изобретение реактивного «сегнерова колеса». Ему принадлежит и создание теории устойчивости стержней при продольном нагружении, приобретшей особую важность спустя столетие.

Много работ Эйлера посвящено различным вопросам физики, главным образом геометрической оптике. Особого упоминания заслуживают изданные Эйлером три тома Писем к немецкой принцессе о разных предметах физики и философии (1768–1772), выдержавшие впоследствии около 40 изданий на девяти европейских языках. Эти «Письма» были своего рода учебным руководством по основам науки того времени, хотя собственно философская сторона их и не соответствовала духу эпохи Просвещения.

Современная пятитомная Математическая энциклопедия указывает двадцать математических объектов (уравнений, формул, методов), которые носят сейчас имя Эйлера. Его имя носит и ряд фундаментальных уравнений гидродинамики и механики твердого тела.

Наряду с многочисленными собственно научными результатами, Эйлеру принадлежит историческая заслуга создания современного научного языка. Он является единственным автором середины XVIII в., труды которого читаются даже сегодня без всякого труда.

Петербургский архив Российской Академии наук хранит, кроме того, тысячи страниц неопубликованных исследований Эйлера, преимущественно в области механики, большое число его технических экспертиз, математические «записные книжки» и колоссальную научную корреспонденцию.

Его научный авторитет при жизни был безграничен. Он состоял почетным членом всех крупнейших академий и ученых обществ мира. Влияние его трудов было весьма значительным и в XIX в. В 1849 Карл Гаусс писал, что «изучение всех работ Эйлера останется навсегда лучшей, ничем не заменимой, школой в различных областях математики».

Общий объем сочинений Эйлера громаден. Свыше 800 его опубликованных научных работ составляют около 30 000 печатных страниц и складываются в основном из следующего: 600 статей в изданиях Петербургской Академии наук, 130 статей, опубликованных в Берлине, 30 статей в разных журналах Европы, 15 мемуаров, удостоенных премий и поощрений Парижской Академии наук, и 40 книг отдельных сочинений. Все это составит 72 тома близкого к завершению Полного собрания трудов (Opera omnia) Эйлера, издаваемого в Швейцарии с 1911. Все работы печатаются здесь на том языке, на котором они были первоначально опубликованы (т.е. на латинском и французском языках, которые были в середине XVIII в. основными рабочими языками, соответственно, Петербургской и Берлинской академий). К этому добавится еще 10 томов его Научной переписки, к изданию которой приступили в 1975.

Надо отметить особое значение Эйлера для Петербургской Академии наук, с которой он был тесно связан на протяжении свыше полувека. «Вместе с Петром I и Ломоносовым, – писал академик С.И.Вавилов, – Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность». Можно добавить еще, что дела Петербургской академии велись в течение почти целого века под руководством потомков и учеников Эйлера: непременными секретарями Академии с 1769 до 1855 были последовательно его сын, зять сына и правнук.

Он вырастил трех сыновей. Старший из них был петербургским академиком по кафедре физики, второй – придворным врачом, а младший – артиллерист дослужился до чина генерал-лейтенанта. Почти все потомки Эйлера приняли в XIX в. российское подданство. Среди них были высшие офицеры российской армии и флота, а также государственные деятели и ученые. Лишь в смутное время начала XX в. многие из них вынуждены были эмигрировать. Сегодня прямые потомки Эйлера, носящие его фамилию, все еще живут в России и Швейцарии.

(Следует заметить, что фамилия Эйлера в подлинном произношении звучит как «Ойлер».)

Издания: Сборник статей и материалов. М. – Л.: Изд-во АН СССР, 1935; Сборник статей. М.: Изд-во АН СССР, 1958

В 1707 году в швейцарском городе Базель в семье священника Пауля Эйлера родился мальчик по имени Леонардо, которому было предписано стать одним из выдающихся математиков того времени. Феноменальная память, высокая трудоспособность, стремление к новым знаниям Леонардо Эйлер проявил уже в раннем возрасте. В 13 лет Леонардо Эйлер был зачислен на факультет искусство Базельского университета. Отец мечтал о карьере священника для своего любимого сына Леонардо. Однако незаурядные математические способности, которыми обладал мальчик, нельзя было зарывать в землю. Вскоре Леонардо станет учеником известного швейцарского математика Иоганна Бернулли.

Спустя некоторое время сыновья Иоганна Бернулли был приглашены в Петербург, а вместе с ними и Леонардо Эйлер. Чрезвычайно талантливый молодой ученый быстро становится широко известным. Его приглашают в Академию наук. В 1727 г. Леонардо Эйлер вступает в Академию наук в звании адъюнкта по физиологии. В 1731 году получает звание профессора физики и становится действительным членом Академии наук. А спустя два года уже возглавляет кафедру высшей математики.


Эрудиция Эйлера поражала его современников. Он был одним из самых образованных ученых: знал греческий, латинский, прекрасно владел немецким, французский, русский и другими языками. Помимо математики, физики и астрономии, имел глубокие познания в области географии, химии, ботаники, анатомии, медицины и в других отраслях науки и техники. Увлекался музыкой и литературой, знал наизусть «Энеиду» Виргилия.


Гениальный математик, выдающийся физик, инфеженер и астроном, географ и виртуозный вычислитель Леонардо Эйлер внес неоценимый вклад в становление российских научных кадоров. Составленное им «Руководство к арифметике», переведенное на русский язык оказало значительное влияние на мировую и российскую учебную литературу.

Научная деятельность Эйлера восхищала глубиной мысли, разнообразием интересов, идей и невероятной продуктивностью. Эйлер одновременно являлся членом многих европейских академии и научных школ. Грандиозная и напряженная работа Эйлера негативно сказалась на его здоровье. В 1735 году Леонардо Эйлер лишился правого глаза, а в 1766 г. потерял и второй глаз. Потеряв зрение полностью, Эйлер не прекратил своей научной деятельности, его трудоспособности могли лишь позавидовать. Часть своих трудов ослепший ученый диктовал писцу. Писцом Эйлера был мальчик-портной, которого ученый приютил и обучил грамоте.


В области математического анализа Эйлер написал множество трудов, сделал огромное количество открытий. Влияние Эйлера на развитие высшей математики было существенным. Именно Леонардо Эйлер привел тригонометрию к известному нам виду, одним из первых сформулировал понятие функции. Его имя носят множество математических понятий, среди них: диаграммы Эйлера, интегралы Эйлера, метод ломаных, окружность Эйлера, подстановки Эйлера, теорема Эйлера и многие другие.

Научное наследие Эйлера чрезвычайно велико. Он сумел добиться блестящих результатов в математическом анализе, геометрии, теории чисел, вариационном исчислении, механике и других приложениях математики. Полное собрание научных трудов Леонардо Эйлера состоит из 72 томов.

Эйлер являет собой образец научного гения, чья деятельность стала достоянием всего человечества. Школьники всего мира изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. В высшей школе студенты обучаются высшей математике согласно классическим монографиям Эйлера. Гениальный математик, Эйлер знал, что плодотворной почвой науки прежде всего является практическая деятельность.

Пожалуй, нет ни одной значимой области математики, в которой не оставил бы след один из лучших математиков XVIIIв. Леонард Эйлер.

Леонард Эйлер – выдающийся математик и физик. Самое точное определение, которым можно охарактеризовать труды, созданные Эйлером, - гениальные материалы, ставшие достоянием всего человечества.
Именно по его методикам в школах и высших учебных заведениях обучают учащихся многих поколений. Леонард внёс колоссальный вклад в развитие математических и физических наук, стал основоположником основного ряда научных открытий. Благодаря своим достижениям, Эйлер являлся почетным академиком во многих странах мира.
Основным направлением Эйлера была математика, однако он работал во многих областях науки, что позволило ему оставить огромное количество важных работ в астрономии, физике, механике и нескольких видах прикладных наук. Эйлер стал не только важнейшим представителем истории в создании учебной литературы для учащихся школ и университетов, но и являлся учителем для многих выдающихся математиков нескольких поколений, которые стали последователями учений Эйлера. Многие знаменитые математики как прошлых лет, так и современности, основывали свои изучения математических наук в большей мере на работах Леонарда. Среди них такие «короли» математики, как Лаплас и Карл Фридрих Гаусс. До сих пор, после многих лет со дня смерти Эйлера, он является вдохновителем для многих учёных со всего мира при постижения новых высот в области математики и её ответвлений.
Даже в современном мире, в век высоких технологий, учебные материалы Леонарда Эйлера остаются крайне востребованными. В разделах математики широко известны такие понятия Эйлера, как:
- прямая;
- прямая в окружности;
- точка;
- теорема для многогранников;
- метод ломаных (метод решения дифференциальных уравнений);
- интеграл бета-функции и гамма-функции;
- угол (в механике – для определения движения тел);
- число (для работы в гидродинамике).
Наверно, невозможно найти хотя бы одну область в математической науке, которая не основывается на учениях такого гениального ученого, как Эйлер. Он оставил поистине значимый след в науке.
Но интересным и значимым является не только вклад Леонарда Эйлера во всевозможных научных областях. Не менее интересной была и его жизнь. Леонард родился 15 апреля 1707 г. в Базеле. Его воспитывал отец, теолог по образованию и священнослужитель по роду деятельности. Первоначальное обучение мальчик получал дома. Его отец Пауль в свое время изучал математику у Якоба Бернулли. И теперь он делился своими знаниями с сыном. Развивая в своём ребенке логическое мышление, Пауль все-таки надеялся, что Леонард в будущем продолжит его духовную карьеру. Но маленький гений был насколько увлечен точной наукой, что ни дня не проводил без того, чтобы не узнавать у отца все больше и больше об этой занимательной науке.
Однако когда пришло время начать серьёзное обучение и получить специальность, отец направил Леонарда в Базельский университет, где молодой человек стал студентом факультета искусств. Там из него должны были сделать духовного человека и направить по пути отца, пастора. Но любовь с детства к математике изменила все планы Пауля, и направила парня по другому пути – пути точных вычислений, формул и цифр. Леонард стал лучшим студентом на своем потоке, благодаря своей безупречной памяти и высоким способностям. А математические успехи юного гения заметил сам Бернулли. Он пригласил Эйлера на учёные занятия к себе домой, и эти учения стали еженедельными.
В 17 лет Леонард удостоился ученой степени магистра, за великолепное прочтение на латыни лекции о философии взглядов Ньютона и Декарда. Эйлер отметился ещё несколькими выдающимися работами, одна из которых (по физике) выиграла в конкурсе Базельского университета на должность профессора. Его труд вызвал бурю восхищений и шквал положительных отзывов. Но несмотря на высокое признание таланта молодого дарования, его посчитали слишком юным для того, чтобы занять ответственную должность профессора университета.
Вскоре, благодаря рекомендациям сыновей Бернулли, с которыми у Леонарда сложились тёплые дружеские отношения, Эйлер получил свой шанс в повышении квалификации. Его пригласили в Петербург, возглавить кафедру по физиологии. Понимая, что в родном городе он не достигнет значительных высот, Леонард принимает приглашение, покидает Швейцарию и отправляется в Петербург.
А тем временем, шло активное развитие науки в Европе. Гениальный Лейбниц представил миру проект, разработанный для создания научных академий. Узнав о разработке данного проекта, Пётр I утвердил план создания петербургской академии. В неё пригласили выдающихся профессоров. Для продвижения обучения наукам и развития российских учёных, были построены университет и гимназия при академии. Перед членами академии стояла задача составить методические пособия для начального изучения математики, механики, физики и других специальностей. Эйлер написал пособие по изучению арифметики, которое вскоре было переведено на русский язык. Эта рекомендация стала первой в российском образовании, по которой начали обучать школьников,
и она навсегда отметила Эйлера в истории как человека, внешнего колоссальный вклад в развитии общества.
Вскоре власть сменилась, вместо Петра I престол заняла Анна Иоанновна. Изменилась политика, изменились взгляды на государство, в том числе и в плане образования. В учебной академии стали видеть учреждение, приносящее большие убытки и не приносящее большой пользы для правительства. Начали ходить слухи о её закрытии.
Но несмотря на все трудности, академия выстояла и продолжала свою деятельность. Некоторые профессора ушли, побоявшись новой власти. Благодаря этому, Леонард занял освободившуюся должность профессора физики, что позволило ему к тому же получать достаточно большую заработную плату. Через пару лет, Леонард Эйлер стал академиком кафедры математики.
Помимо блистательной карьеры, у Леонарда была и счастливая жизнь. В возрасте 26 лет он женился на прекрасной и утонченной Екатерины Гзель, дочери известного живописца. День бракосочетания назначили на Новый год, и приглашенными гостями стали все работники академии. Две семьи великого Эйлера собрались для празднования двух праздников. Семья родственников и семья из академии наук. Ведь для него работа стала вторым домом, а коллеги стали близкими людьми.
Работоспособность Эйлера поражала. Он не мог жить без своей научной карьеры. Однажды он взял на разработку задание, полученное академии. Особенностью являлось то, что задание было невероятно большого объёма. На его выполнение было выделено три месяца. Однако Эйлер хотел выделиться, показать свои выдающиеся способности, и выполнил данное задание за три дня. Это вызвало бурю положительных обсуждений и восхищение талантом профессора. Но сильное перенапряжение оказало негативное влияние на организм ученого – не выдержав мощной нагрузки, Леонард ослеп на один глаз. Но Эйлер проявил стойкость и философскую мудрость, заявив, что теперь он сможет уделить больше времени своей семье и личной жизни, поскольку отныне будет меньше отвлекаться на математику.
После этого, Эйлер стал ещё более знаменит в кругу светил науки, а его грандиозная работа, лишившая его половины зрения, принесла ему поистине мировую славу. Его блестящее аналитическое изложение механики как метода движения стало открытием новой вехи в мире науки.
С совершенствованием мира, совершенствовалась и наука. Эйлер начал изучение описания физических явлений с помощью интегралов. Сложностью являлось то, что Леонард жил в Петербурге, где научная академия не считалась выдающейся и не имела должного уважения. Развитие науки ухудшилось ещё и тем, что в России был объявлен новый правитель – малолетний Иоанн. По мнению Эйлера, положение развития научных исследований стало нестабильным и не имело развитого светлого будущего. Поэтому Эйлер с радостью принял приглашение работать на Берлинскую академию. Но при этом математик дал слово не забывать Петербургскую академию, которой он отдал много лет своей жизни, и помогать по мере возможности. Через 25 лет он вернётся на российскую землю. Но пока он с семьёй, женой и детьми, переезжает в Берлин. Однако все время, которое Эйлер пребывает в Берлине, он продолжает писать работы для российской академии, редактировать новые методики русских учёных, приобретает научные российские книги, а также принимает в своём доме студентов из России, отправленных на стажировку к великому ученому. А главное – остаётся почетным членом академии Петербурга.
Вскоре выходит собрание сочинений Бернулли, которое старый профессор отправляет своему ученику в Берлин с просьбой продолжить его труды. И Эйлер не подвёл своего учителя. Несмотря на проблемы со здоровьем, он начинает активно выпускать работы, в последствии приобретавшие колоссальный успех и признание. Такими работами были:
- «Введение в анализ бесконечных»;
- «Наставления по дифференциальных исчислению»;
- «Теория движения луны»;
- «Морская наука»;
- «Письма о разных физических и философических материях».
Последняя из перечисленными работ стала очередным грандиозным прорывом Эйлера, которая была переведена на десятки языков и опубликована во множестве изданий всего мира. Помимо этого, Эйлер писал множество научных статей, которые имели большой успех.
Несмотря на свое ученое образование, профессор не стремился писать заумные статьи. Он всегда писал на языке, доступном для понимания людей любого уровня знаний. Он описывал свои работы так, словно изучал тему одновременно с читателем, начиная с открытия темы, осознания цели работы, с рассуждений, приводящих к логическому итогу. Самостоятельно пройдя путь обучения, пройдя через все его сложные этапы, Эйлер знал, что ощущают люди, которые начинают вникать в сложную структуру науки. Поэтому он старался сделать свои работы интересными и понятными.
Большим достижением стало открытие формул, определяющих критическую нагрузку при сжатии стержня. В те годы эта работа не вызвала потребности в её использовании, но спустя почти столетие, она стала необходимой при сооружении железнодорожных мостов в Англии.
Леонард выполнял огромный объем работ на основании своих открытий и расчётов. В год выходило порядка 1000 страниц его трудов. Это серьёзный масштаб даже для литературных произведений. Но то, что на этих страницах были числа и формулы в таком объёме… Гениальность профессора вызывает восхищение!
Новая императрица Екатерина II выделяла внушительные суммы для развития науки, и обратив внимание на талантливого профессора, предложила ему вернуться в Петербург и возглавить управление математическим отделением в академии. В своём предложении она указала достаточно солидный оклад, при этом отметив, что если профессору эта сумма окажется недостаточной, она готова принять его условия, лишь бы он согласился приехать в Петербург. Эйлер соглашается на это выгодное предложение, однако его не желают отпускать со службы в Берлине. После отказа нескольких его прошений, Эйлер идёт на хитрость и просто перестаёт выпускать научные работы. Это дало свои результаты, и ему наконец было разрешено уехать в Россию. По прибытии в Петербург, императрица одарила профессора всевозможными благами, в том числе выделила средства на покупку личного дома и на его комфортабельную обстановку. Первой просьбой Екатерины Великой стал проект идей, модернизирующих академию.
Активная работа и сильное напряжение окончательно лишило Леонарда Эйлера драгоценного зрения. Но даже это не остановило научного гения от совершенствования научного мира. Все его мысли, открытия, научные труды он диктует юному мальчику, который все старательно записывает на немецком языке.
Вскоре случилась страшная непредвиденная ситуация – в Петербурге возник грандиозный пожар, жертвами которого стали множества зданий. В том числе и дом профессора. Его с трудом удалось спасти. По счастью, его научные работы практически не пострадали. Сгорела только одна работа – «Новая теория движения луны». Но благодаря безупречной, феноменальной памяти, которая оставалась у Леонарда даже в преклонном возрасте, уничтоженную работу удалось восстановить.
Эйлер был вынужден переехать с семьёй в новый дом. Это вызвало у профессора, лишившегося зрения, массу неудобств, поскольку все в этом доме было ему незнакомым, и ему было сложно ориентироваться на ощупь. Вскоре в Петербург приехал выдающийся немецкий окулист, Венцель. Он намеревался вернуть великому профессору зрение. Операция, которая длилась всего несколько минут, позволила вернуть зрение Эйлеру на левый глаз. Доктор настоятельно рекомендовал Леонарду беречь глаза, избегать долгого напряжения, не писать и не читать. Но одержимая любовь профессора к науке не позволила ему придерживаться рекомендаций окулиста. Он вновь стал активно работать, что привело к страшным последствиям – он окончательно потерял зрение. К удивлению окружающих, гений с невероятным спокойствием относится ко всему произошедшему. Его научная деятельность даже возросла – ясный поток мыслей позволил ему осмыслить ещё ряд научных достижений, появляющихся на бумаге благодаря его ученикам, которые писали под диктовку.
Вскоре умерла жена Леонарда, и это стало серьёзным потрясением для него, человека, безумно привязанного к своей семье. Прожив с любимой супругой 40 лет, Эйлер уже не представлял жизни без неё. Отвлечься от горя ему помогала наука. До последних дней своей жизни Эйлер продолжал активно и продуктивно работать. Его главным помощником в написании стал старший сын, а также несколько верных учеников. Все они были глазами профессора, позволяющими представить научному миру последние мысли гения.
В 1793 году Леонард почувствовал резкое ухудшения здоровья, сильные и регулярные головные боли вызывали у него серьёзное беспокойство и уже не позволяли плодотворно работать. На одной из важных встреч с Лекселем, обсуждая открытие новой планеты Уран, Эйлер почувствовал сильное головокружение. Успев произнести слова «Я умираю», гениальный профессор потерял сознание. Позже медицинская экспертиза выяснить, что он умер от кровоизлияния в мозг.
Великий математик Леонард Эйлер был похоронен петербургском Смоленском кладбище. Мир потерял талантливого, превосходного ученого, профессора и невероятного человека. Но после себя он оставил грандиозный объем необходимых для человечества открытый.

Похожие статьи