Хлористый водород: формула, получение, физические и химические свойства, техника безопасности. Соляная кислота

Цистерна с соляной кислотой

Одна из сильных одноосновных кислот и образуется при растворении газа хлороводорода (HCl) в воде, - прозрачная бесцветная жидкость с характерным запахом хлора. Разбавленная соляная кислота (также как и фосфорная) часто применяется для снятия оксидов при пайке металлов.

Иногда газообразное соединение HCl ошибочно называют соляной кислотой. HCl - это газ, который при растворении в воде образует соляную кислоту.

Хлороводород - бесцветный газ с резким удушливым запахом хлора. Он переходит в жидкое состояние при -84 0 C, а при -112 0 C - переходит в твёрдое состояние.

Хлороводород очень хорошо растворяется в воде. Так при 0 0 C в 1л воды растворяется 500л хлороводорода.
В сухом состоянии газ хлороводород достаточно инертный, но уже может взаимодействовать с некоторыми органическими веществами, например с ацетиленом (газ, который выделяется при опускании карбида в воду).

Химические свойства соляной кислоты

Химическая реакция с металлами :
2HCl + Zn =ZnCl 2 + H 2 - образуется соль (в данном случае прозрачный раствор хлорид цинка) и водород
- химическая реакция с оксидами металлов :
2HCl + CuO = CuCl 2 + H 2 O - образуется соль (в данном случае раствор соли зёленого хлорида меди) и вода
- химическая реакция с основаниями и щелочами (или реакция нейтрализации)
HCl + NaOH = NaCl + H 2 O - реакция нейтрализации, -образуется соль (в данном случае прозрачный раствор хлорид натрия) и вода.
- химическая реакция с солями (например, c мелом СaCO 3):
HCl + СaCO 3 = CaCl 2 + CO 2 + H 2 O - образуется углекислый газ, вода и прозрачный раствор хлорида кальция CaCl 2 .

Получение соляной кислоты

Соляную кислоту получают с помощью химической реакции соединения :

H 2 + Cl 2 = HCl - реакция происходит при повышенной температуре

А также при взаимодействии поваренной соли и концентрированной серной кислотой:

H 2 SO 4 (конц.) + NaCl = NaHSO 4 + HCl

В этой реакции, если вещество NaCl - в твёрдом виде, то HCl - это газ хлороводород , который при растворении в воде образует соляную кислоту

Существуют сложные химические вещества, по химическому строению сходные с соляной кислотой, но при этом содержащие в молекуле от одного до четырёх атомов кислорода. Эти вещества можно назвать кислородсодержащими кислотами . С повышением числа атомов кислорода увеличивается стойкость кислоты и её окислительная способность.

К кислородсодержащим кислотам слудующие:

  • хлорноватистая (HClO),
  • хлористая (HClO 2),
  • хлорноватая (HClO 3),
  • хлорная (HClO 4).

Каждое из этих химических сложных веществ обладает всеми свойствами кислот и способна образовывать соли. Хлорноватистая кислота (HClO) образует гипохлориты , например, соединение NaClO - гипохлорит натрия. Сама хлорноватистая кислота образуется при растворении хлора в холодной воде по химической реакции:

H 2 O + Cl 2 = HCl + HClO,

Как видите, в этой реакции образуется сразу две кислоты - соляная HCl и хлорноватистая HClO. Но последняя - нестойкое химическое соединение и постепенно переходит в соляную кислоту;

Хлористая HClO 2 образует хлориты , соль NaClO 2 - хлорит натрия;
хлорноватая (HClO 3) - хлораты , соединение KClO 3 , - хлорат калия (или бертолетова соль )- кстати, это вещество широко применяется при изготовления спичек .

И наконец самая сильная из известных одноосновных кислот - хлорная (HClO 4) - бесцветная, дымящаяся на воздухе, сильно гигроскопичная жидкость, - образует перхлораты , например, KClO 4 - перхлорат калия.

Соли, образованные хлорноватистой HClO и хлористой HClO 2 кислотами, в свободном состоянии не устойчивы и являются сильными окислителями в водных растворах. А вот соли, образованные хлорноватой HClO 3 и хлорной HClO 4 кислотами на основании щелочных металлов (например, таrже бертолетова соль KClO 3), - достаточно устойчивы и не проявляют окислительных свойств.

ОПРЕДЕЛЕНИЕ

Хлороводород (хлороводородная кислота, соляная кислота) - сложное вещество неорганической природы, которое может существовать как в жидком, так и в газообразном состоянии.

Во втором случае оно представляет собой бесцветный газ, хорошо растворимый в воде, а в первом - раствор сильной кислоты (35-36%). Строение молекулы хлороводорода, а также её структурная формула приведены на рис. 1. Плотность - 1,6391 г/л (н.у.). Температура плавления равна - (-114,0 o С), кипения - (-85,05 o С).

Рис. 1. Структурная формула и пространственное строение молекулы хлороводорода.

Брутто-формула хлороводорода - HCl. Как известно, молекулярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Молярная масса (М) - это масса 1 моль вещества. Легко показать, что численные значения молярной массы М и относительной молекулярной массы M r равны, однако первая величина имеет размерность [M] = г/моль, а вторая безразмерна:

M = N A × m (1 молекулы) = N A × M r × 1 а.е.м. = (N A ×1 а.е.м.) × M r = × M r .

Это означает, что молярная масса хлороводорода равна 36,5 г/моль .

Молярную массу вещества в газообразном состоянии можно определить, используя понятие о его молярном объеме. Для этого находят объем, занимаемый при нормальных условиях определенной массой данного вещества, а затем вычисляют массу 22,4 л этого вещества при тех же условиях.

Для достижения данной цели (вычисление молярной массы) возможно использование уравнения состояния идеального газа (уравнение Менделеева-Клапейрона):

где p - давление газа (Па), V - объем газа (м 3), m - масса вещества (г), M - молярная масса вещества (г/моль), Т - абсолютная температура (К), R - универсальная газовая постоянная равная 8,314 Дж/(моль×К).

Примеры решения задач

ПРИМЕР 1

Задание В каком из указанных веществ массовая доля элемента кислорода больше: а) в оксиде цинка (ZnO); б) в оксиде магния (MgO)?
Решение

Найдем молекулярную массу оксида цинка:

Mr (ZnO) = Ar(Zn) + Ar(O);

Mr (ZnO) = 65+ 16 = 81.

Известно, что M = Mr, значит M(ZnO) = 81 г/моль. Тогда массовая доля кислорода в оксиде цинка будет равна:

ω (O) = Ar (O) / M (ZnO) × 100%;

ω (O) = 16 / 81 × 100% = 19,75%.

Найдем молекулярную массу оксида магния:

Mr (MgO) = Ar(Mg) + Ar(O);

Mr (MgO) = 24+ 16 = 40.

Известно, что M = Mr, значит M(MgO) = 60 г/моль. Тогда массовая доля кислорода в оксиде магния будет равна:

ω (O) = Ar (O) / M (MgO) × 100%;

ω (O) = 16 / 40 × 100% = 40%.

Таким образом, массовая доля кислорода больше в оксиде магния, поскольку 40>19,75.

Ответ Массовая доля кислорода больше в оксиде магния

ПРИМЕР 2

Задание В каком из указанных соединений массовая доля металла больше: а) в оксиде алюминия (Al 2 O 3); б) в оксиде железа (Fe 2 O 3)?
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Рассчитаем массовую долю каждого элемента кислорода в каждом из предложенных соединений (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева округлим до целых чисел).

Найдем молекулярную массу оксида алюминия:

Mr (Al 2 O 3) = 2×Ar(Al) + 3×Ar(O);

Mr (Al 2 O 3) = 2×27 + 3×16 = 54 + 48 = 102.

Известно, что M = Mr, значит M(Al 2 O 3) = 102 г/моль. Тогда массовая доля алюминия в оксиде будет равна:

ω (Al) = 2×Ar(Al) / M (Al 2 O 3) × 100%;

ω (Al) = 2×27 / 102 × 100% = 54 / 102 × 100% = 52,94%.

Найдем молекулярную массу оксида железа (III):

Mr (Fe 2 O 3) = 2×Ar(Fe) + 3×Ar(O);

Mr (Fe 2 O 3) = 2×56+ 3×16 = 112 + 48 = 160.

Известно, что M = Mr, значит M(Fe 2 O 3) = 160 г/моль. Тогда массовая доля железа в оксиде будет равна:

ω (O) = 3×Ar (O) / M (Fe 2 O 3) × 100%;

ω (O) = 3×16 / 160 × 100% = 48 / 160× 100% = 30%.

Таким образом, массовая доля металла больше в оксиде алюминия, поскольку 52,94 > 30.

Ответ Массовая доля металла больше в оксиде алюминия

51.5

-85,0 -20 1,0 14,53

При 30° жидкий хлористый водород растворяет меньше 0,1% воды. Молярная теплоемкость газообразного хлористого водорода при постоянном давлении вычисляется по формуле Ср = 6,5 + 0,001 Т.

Во влажном воздухе хлори­стый водород образует густой туман - мельчайшие капли со­ляной кислоты. Вредно дей­ствует на организм, раздражая и разрушая слизистые оболоч­ки и дыхательные пути. Пре­дельно допустимая концентра­ция НС1 в воздухе рабочей зо­ны производственных помеще­ний 0,01 мг/л (С12-0,001 мг/л).

Безводный хлористый во­дород почти не действует на металлы, соляная же кислота растворяет большинство метал­лов. В соляной кислоте устой­чивы платина, золото, тантал, ниобий, некоторые силикатные минералы (андезит, диабаз, кварц) и изделия (стекло, ке­рамика, фарфор), а также эбо­нит, резина, некоторые пласти­ческие массы, например, фао - лит, винипласт, тефлон и др. Углеродистая сталь, нагретая до 300-400°, и нержавеющие стали 1Х18Н9Т и ЭИ-496, на­гретые до 500°, удовлетвори­тельно устойчивы к соляной ки­слоте2"3. Окислы металлов превращаются газообразным хлористым водородом в хлори­ды; реакции ускоряются в при­сутствии водяного пара 4. Растворимость хлористого водорода в воде очень велика и Вильно зависит от температуры; при общем давлении 760 мм рт. ст.:

0 10 20 30 40 50 60

506,5 473,9 442,0 411,5 385,7 361,6 338,7

При парциальном давлении НС1 в газе 760 мм рт. ст. 1 л при 0° растворяет 525,2 л НС1 (в растворе 46,15 вес.% НС1), при 18° -451,2 л НС1 (в растворе 42,34 вес. % НС1). Общее давление паров и давление НС1 над соляной кислотой приведены на рис. 111 и 112. Теплоты растворения НС1 в воде могут быть вычислены с Помощью рис. 113.

Равновесное давление НС1 над соляной кислотой понижается при внесении в раствор CuCl, NH4CI и повышается в присутствии TiCU, SnCl2, SnCl4. Предпола­гают, что в системах CuCl - HCl - Н20, CuCl - NH4CI - - HCl - Н20, NH4C1 -HCl - -Н20 образуются соединения соответственно: 2СиС1 НС1, CuCl 2NH4C1, NH4CI «НС1 (и-зависит от температуры) 6. В системе CuCl2-НС1-Н20 при неизменной температуре давление пара Н20 уменьша­ется с возрастанием содержа­ния в растворе как НС1, так и СиС12. Это указывает на то, что в системе происходит высали­вание CuCI2 и HCI. В системе ZnCl2-HCl-Н20 взаимодей­ствие компонентов более слож­ное-в области одних концент­раций происходит высалива­ние, в области других - всали - вание отдельных компонентов6.

400

350

300

Для давления паров в системе НС1-Н20 характерен минимум, соответствующий азеотропной смеси, состав которой зависит от температуры кипения (давления). Азеотропная смесь, кипящая при

ТАБЛИЦА 29

Концентрации азеотропных растворов в системе НС1-Н20

Давление,

Давление,

Давление,

| Давление,

Мм рт. ст.

Мм рт. ст.

Мм рт. ст.

Мм рт. ст.

110° (под давлением 760 мм рт. ст.), содержит 20,24 вес. % НС1, при 75,9-22,15%, при 56,2-23,2%, при 19,9-24,6% 7 (см. также табл. 26).

Температуры кипения соляной кислоты при давлении 760 мм рт. ст. приведены в табл. 27.

Коэффициенты активности соляной кислоты приведены в Табл. 28 (см. также®).

ТАБЛИЦА 28

В системе НС1-Н20 установлено существование двух эвтектик: при -74,7° с 23,0% НС1 и при -73,0° с 26,5% НС!. Между эвтек- тиками находится ветвь кристаллизации конгруэнтно плавящегося при -70° гексагидрата НС1 6Н20. Метастабильная эвтектика лед -НС1-4Н20 находится при -87,5° и содержит 24,8% НС19.

В системе НС1-Н20 существуют кристаллогидраты10"11: НС1 8Н20, НС1 4Н20, НСЬЗНаО" (*пл -24,4°), НС1 2Н20 ,{*пл -17,7°), НС1 Н20 (/пл -15,35°). Лед кристаллизуется из.10%-ной кислоты при -20°, из 15%-ной при -30°, из 20%-ной при -60°, из 24%-ной при -80°.

Плотность соляной кислэты при 16°:

Концентрация HCl, % . . 10,17 20,01 30,56 39,11 Плотность, г/см3 1,050 1,100 1,165 1,200

Удельная теплоемкость с соляной кислоты, содержащей п мо­лей воды на 1 моль НС1 п:

П... ........... 5,2 10 ?0 50 100 290

С .............................. 0,660 0,749 0,885 0,932 0,964 0,970

Вязкость 2 н. соляной кислоты в 1,12 раза, а 12 и. кислоты в 2,14 раза больше вязкости воды.

Соляную кислоту применяют в химической промышленности для выработки хлористых солей цинка, кальция, бария, аммония и других и органических продуктов - анилина, дифениламина и про­чих, для выработки синтетического каучука (хлоропрена), краси­телей, для омыления жиров и масел. Соляную кислоту применяют йри получении гидролизного спирта и глюкозы из крахмала, в про­изводстве сахара, желатина и клея, при дублении и окраске кож, в производстве активированного угля, при крашении тканей, для травления металлов (снятия окислов с их поверхности) при метал­лообработке, в различных гидрометаллургических процессах, в гальванопластике, в нефтедобыче для увеличения дебита скважин, для консервирования кормов (в Японии) и т. д. Жидкий и газооб­разный хлористый водород применяют для гидрохлорирования раз - Личных органических соединений с целью получения хлористого этила C2HsCl, хлорвинила СН2СНС1 из ацетилена, этиленхлоргид- рина, синтетической камфоры и др.

В США производят более 1,8 мли. т в год соляной кислоты (100% НС1)17.

Выпускают несколько сортов твхничвекой соляной кислоты.(табл. 30).

ТАБЛИЦА 30

Требования к качеству соляной кислоты

Техническая

Синтетическая техническая

По ГОСТ 1382-69

По ГОСТ 857 - 69

По ГОСТ 5.1691-72 (аттестованная про­дукция)

0,005 0,003 0,0001 0,003

0,005 0,003 0.0001 0,003

0,008 0,008 0,0002 0,008

Очистка разбавленных растворов соляной кислоты (до 5 М) от

Соединений железа может быть произведена с помощью анионооб - менной смолы, которую регенерируют промывкой водой 18. Очистку концентрированной технической соляной кислоты (с концентра­цией больше 32% НС1) от ионов Fe3+, Fe2+ и S04~ - предложено про­изводить катионообменной смолой, приготовленной на основе фе­

Показана возможность очищать соляную кислоту от железа экстракцией бутилацетатом - при содержании Fe (III) 10-25 г/л Степень извлечения его превышает 99,9% 20. Летучие примеси можно выдувать из соляной кислоты воздухом.

Соляную кислоту транспортируют в стальных гуммированных цистернах и бочках и в фаолитовых контейнерах, а также в стек­лянных бутылях емкостью не более 40 л. Бутыли помещают в пле­теные из прутьев корзины или деревянные обрешетки, выложенные соломой или древесной стружкой. Хранят соляную кислоту в сталь­ных гуммированных резервуарах, а также в резервуарах, защищен­ных" фаолитом и винипластом21. Использование гуммированных цистерн и резервуаров сильно упрощается при осуществлении вул­канизации обкладки без давления при низкой температуре22.

В отдельных случаях для транспортировки и хранения НС1, а также для санитарных целей может представить интерес поглоще­ние хлористого водорода сульфатом меди или свинца, из которых он потом выделяется при нагревании23.

К техническому сульфату натрия, получаемому в соляно-суль- фатном производстве, по ГОСТ 1363-47 предъявляются следую­щие требования (в %):

I сорт II сорт

TOC o "1-3" h z Na2S04, не менее................................................................ 95 91

H2S04, не более................................................................. 1,5 3,5

NaCl » » . . ,.................................................................... 1,2 3,5

Fe » » ............................................................................. 0,2 0,25

Не растворимый в воде остаток, не более... 0,3 0,8

1.477 г/л, газ (25 °C) Термические свойства Т. плав. −114,22 °C Т. кип. −85 °C Т. разл. 1500 °C Кр. точка 51,4 °C Энтальпия образования -92,31 кДж/моль Химические свойства pK a -4; -7 Растворимость в воде 72,47 (20 °C) Классификация Рег. номер CAS 7647-01-0 Безопасность NFPA 704 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного. \mathsf{Mg + 2HCl \rightarrow MgCl_2 + H_2\uparrow} \mathsf{FeO + 2HCl \rightarrow FeCl_2 + H_2O}

Хлориды чрезвычайно распространены в природе и имеют широчайшее применение (галит , сильвин). Большинство из них хорошо растворяется в воде и полностью диссоциирует на ионы. Слаборастворимыми являются хлорид свинца (PbCl 2), хлорид серебра (AgCl), (Hg 2 Cl 2 , каломель) и хлорид меди(I) (CuCl).

\mathsf{4HCl + O_2 \rightarrow 2H_2O + 2Cl_2\uparrow} \mathsf{SO_3 + HCl \rightarrow HSO_3Cl}

Для хлороводорода также характерны реакции присоединения к кратным связям (электрофильное присоединение):

\mathsf{R\text{-}CH\text{=}CH_2 + HCl \rightarrow R\text{-}CHCl\text{-}CH_3} \mathsf{R\text{-}C \equiv CH + 2HCl \rightarrow R\text{-}CCl_2\text{-}CH_3}

Получение

В лабораторных условиях хлороводород получают, воздействуя концентрированной серной кислотой на хлорид натрия (поваренную соль) при слабом нагревании:

\mathsf{NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl\uparrow} \mathsf{PCl_5 + H_2O \rightarrow POCl_3 + 2HCl} \mathsf{RCOCl + H_2O \rightarrow RCOOH + HCl}

В промышленности хлороводород ранее получали в основном сульфатным методом (методом Леблана), основанном на взаимодействии хлорида натрия с концентрированной серной кислотой. В настоящее время для получения хлороводорода обычно используют прямой синтез из простых веществ :

\mathsf{H_2 + Cl_2 \rightarrow 2HCl}

В производственных условиях синтез осуществляется в специальных установках, в которых водород непрерывно сгорает ровным пламенем в токе хлора , смешиваясь с ним непосредственно в факеле горелки. Тем самым достигается спокойное (без взрыва) протекание реакции. Водород подается в избытке (5 - 10 %), что позволяет полностью использовать более ценный хлор и получить незагрязненную хлором соляную кислоту.

Соляную кислоту получают растворением газообразного хлороводорода в воде.

Применение

Водный раствор широко используется для получения хлоридов, для травления металлов, очистки поверхности сосудов, скважин от карбонатов, обработки руд, при производстве каучуков, глутамината натрия, соды, хлора и других продуктов. Также применяется в органическом синтезе. Широкое распространение раствор соляной кислоты получил в производстве мелкоштучных бетонных и гипсовых изделий: тротуарная плитка, жби изделия и т.д.

Безопасность

Вдыхание хлороводорода может привести к кашлю , удушью, воспалению носа, горла и верхних дыхательных путей, а в тяжёлых случаях, отёк легких , нарушение работы кровеносной системы, и даже смерть. Контактируя с кожей может вызывать покраснение, боль и серьёзные ожоги. Хлористый водород может вызвать серьёзные ожоги глаз и их необратимое повреждение.

Напишите отзыв о статье "Хлороводород"

Примечания

Литература

  • Левинский М.И, Мазанко А. Ф., Новиков И. Н. «Хлористый водород и соляная кислота» М.:Химия 1985

Ссылки

Отрывок, характеризующий Хлороводород

На другой день княжна к вечеру уехала, и к Пьеру приехал его главноуправляющий с известием, что требуемых им денег для обмундирования полка нельзя достать, ежели не продать одно имение. Главноуправляющий вообще представлял Пьеру, что все эти затеи полка должны были разорить его. Пьер с трудом скрывал улыбку, слушая слова управляющего.
– Ну, продайте, – говорил он. – Что ж делать, я не могу отказаться теперь!
Чем хуже было положение всяких дел, и в особенности его дел, тем Пьеру было приятнее, тем очевиднее было, что катастрофа, которой он ждал, приближается. Уже никого почти из знакомых Пьера не было в городе. Жюли уехала, княжна Марья уехала. Из близких знакомых одни Ростовы оставались; но к ним Пьер не ездил.
В этот день Пьер, для того чтобы развлечься, поехал в село Воронцово смотреть большой воздушный шар, который строился Леппихом для погибели врага, и пробный шар, который должен был быть пущен завтра. Шар этот был еще не готов; но, как узнал Пьер, он строился по желанию государя. Государь писал графу Растопчину об этом шаре следующее:
«Aussitot que Leppich sera pret, composez lui un equipage pour sa nacelle d"hommes surs et intelligents et depechez un courrier au general Koutousoff pour l"en prevenir. Je l"ai instruit de la chose.
Recommandez, je vous prie, a Leppich d"etre bien attentif sur l"endroit ou il descendra la premiere fois, pour ne pas se tromper et ne pas tomber dans les mains de l"ennemi. Il est indispensable qu"il combine ses mouvements avec le general en chef».
[Только что Леппих будет готов, составьте экипаж для его лодки из верных и умных людей и пошлите курьера к генералу Кутузову, чтобы предупредить его.
Я сообщил ему об этом. Внушите, пожалуйста, Леппиху, чтобы он обратил хорошенько внимание на то место, где он спустится в первый раз, чтобы не ошибиться и не попасть в руки врага. Необходимо, чтоб он соображал свои движения с движениями главнокомандующего.]
Возвращаясь домой из Воронцова и проезжая по Болотной площади, Пьер увидал толпу у Лобного места, остановился и слез с дрожек. Это была экзекуция французского повара, обвиненного в шпионстве. Экзекуция только что кончилась, и палач отвязывал от кобылы жалостно стонавшего толстого человека с рыжими бакенбардами, в синих чулках и зеленом камзоле. Другой преступник, худенький и бледный, стоял тут же. Оба, судя по лицам, были французы. С испуганно болезненным видом, подобным тому, который имел худой француз, Пьер протолкался сквозь толпу.
– Что это? Кто? За что? – спрашивал он. Но вниманье толпы – чиновников, мещан, купцов, мужиков, женщин в салопах и шубках – так было жадно сосредоточено на то, что происходило на Лобном месте, что никто не отвечал ему. Толстый человек поднялся, нахмурившись, пожал плечами и, очевидно, желая выразить твердость, стал, не глядя вокруг себя, надевать камзол; но вдруг губы его задрожали, и он заплакал, сам сердясь на себя, как плачут взрослые сангвинические люди. Толпа громко заговорила, как показалось Пьеру, – для того, чтобы заглушить в самой себе чувство жалости.
– Повар чей то княжеский…
– Что, мусью, видно, русский соус кисел французу пришелся… оскомину набил, – сказал сморщенный приказный, стоявший подле Пьера, в то время как француз заплакал. Приказный оглянулся вокруг себя, видимо, ожидая оценки своей шутки. Некоторые засмеялись, некоторые испуганно продолжали смотреть на палача, который раздевал другого.
Пьер засопел носом, сморщился и, быстро повернувшись, пошел назад к дрожкам, не переставая что то бормотать про себя в то время, как он шел и садился. В продолжение дороги он несколько раз вздрагивал и вскрикивал так громко, что кучер спрашивал его:
– Что прикажете?
– Куда ж ты едешь? – крикнул Пьер на кучера, выезжавшего на Лубянку.
– К главнокомандующему приказали, – отвечал кучер.
– Дурак! скотина! – закричал Пьер, что редко с ним случалось, ругая своего кучера. – Домой я велел; и скорее ступай, болван. Еще нынче надо выехать, – про себя проговорил Пьер.
Пьер при виде наказанного француза и толпы, окружавшей Лобное место, так окончательно решил, что не может долее оставаться в Москве и едет нынче же в армию, что ему казалось, что он или сказал об этом кучеру, или что кучер сам должен был знать это.
Приехав домой, Пьер отдал приказание своему все знающему, все умеющему, известному всей Москве кучеру Евстафьевичу о том, что он в ночь едет в Можайск к войску и чтобы туда были высланы его верховые лошади. Все это не могло быть сделано в тот же день, и потому, по представлению Евстафьевича, Пьер должен был отложить свой отъезд до другого дня, с тем чтобы дать время подставам выехать на дорогу.
24 го числа прояснело после дурной погоды, и в этот день после обеда Пьер выехал из Москвы. Ночью, переменя лошадей в Перхушкове, Пьер узнал, что в этот вечер было большое сражение. Рассказывали, что здесь, в Перхушкове, земля дрожала от выстрелов. На вопросы Пьера о том, кто победил, никто не мог дать ему ответа. (Это было сражение 24 го числа при Шевардине.) На рассвете Пьер подъезжал к Можайску.
Все дома Можайска были заняты постоем войск, и на постоялом дворе, на котором Пьера встретили его берейтор и кучер, в горницах не было места: все было полно офицерами.
В Можайске и за Можайском везде стояли и шли войска. Казаки, пешие, конные солдаты, фуры, ящики, пушки виднелись со всех сторон. Пьер торопился скорее ехать вперед, и чем дальше он отъезжал от Москвы и чем глубже погружался в это море войск, тем больше им овладевала тревога беспокойства и не испытанное еще им новое радостное чувство. Это было чувство, подобное тому, которое он испытывал и в Слободском дворце во время приезда государя, – чувство необходимости предпринять что то и пожертвовать чем то. Он испытывал теперь приятное чувство сознания того, что все то, что составляет счастье людей, удобства жизни, богатство, даже самая жизнь, есть вздор, который приятно откинуть в сравнении с чем то… С чем, Пьер не мог себе дать отчета, да и ее старался уяснить себе, для кого и для чего он находит особенную прелесть пожертвовать всем. Его не занимало то, для чего он хочет жертвовать, но самое жертвование составляло для него новое радостное чувство.

Хлористый водород - что это такое? Хлороводород - это бесцветный газ, обладающий резким запахом. Он легко растворяется в воде, образуя соляную кислоту. Химическая формула хлористого водорода - HCl. Он состоит из атома водорода и хлора, соединенных ковалентной полярной связью. Хлороводород легко диссоциирует в полярных растворителях, что обеспечивает хорошие кислотные свойства данного соединения. Длина связи составляет 127,4 нм.

Физические свойства

Как было сказано выше, в нормальном состоянии хлороводород - это газ. Он несколько тяжелее воздуха, а также обладает гигроскопичностью, т. е. притягивает пары воды прямо из воздуха, образуя при этом густое облака пара. По этой причине говорят, что хлористый водород «дымит» на воздухе. Если охлаждать данный газ, то на отметке -85 °С он сжижается, а к -114 °C становится твердым веществом. При температуре 1500 °С разлагается на простые вещества (исходя из формулы хлористого водорода, на хлор и водород).

Раствор HCl в воде называют соляной кислотой. Она представляет собой бесцветную едкую жидкость. Иногда имеет желтоватый оттенок из-за примесей хлора или железа. Из-за гигроскопичности максимальная концентрация при 20 °С - 37-38 % по массе. От нее же зависят и другие физические свойства: плотность, вязкость, температуры плавления и кипения.

Химические свойства

Сам хлороводород обычно в реакции не вступает. Лишь только при высокой температуре (более 650 °С) он реагирует с сульфидами, карбидами, нитридами и боридами, а также оксидами переходных металлов. В присутствии кислот Льюиса может взаимодействовать с гидридами бора, кремния и германия. А вот ее водный раствор гораздо более химически активен. По своей формуле хлористый водород - это кислота, поэтому он обладает некоторыми свойствами кислот:

  • Взаимодействие с металлами (которые стоят в электрохимическом ряду напряжений до водорода):

Fe + 2HCl = FeCl 2 + H 2

  • Взаимодействие с амфотерными и основными оксидами:

BaO + 2HCl = BaCl 2 + H 2 O

  • Взаимодействие со щелочами:

NaOH + HCl = NaCl + H 2 O

Взаимодействие с некоторыми солями:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2

  • При взаимодействии с аммиаком образуется соль хлорида аммония:

NH 3 + HCl = NH 4 Cl

Но соляная кислота не взаимодействует со свинцом из-за пассивации. Это обусловлено образованием на поверхности металла слоя хлорида свинца, который нерастворим в воде. Таким образом, этот слой защищает металл от дальнейшего взаимодействия с соляной кислотой.

В органических реакциях она может присоединятся по кратным связям (реакция гидрогалогенирования). Также она может реагировать с белками или аминами, образуя органические соли - хлоргидраты. Искусственные волокна, типа бумаги, при взаимодействии с соляной кислотой разрушаются. В окислительно-восстановительных реакциях с сильными окислителями хлороводород восстанавливается до хлора.

Смесь концентрированной соляной и азотной кислоты (3 к 1 по объему) называют «царской водкой». Она является крайне сильным окислителем. Из-за образования в этой смеси свободного хлора и нитрозила царская водка может растворять даже золото и платину.

Получение

Ранее в промышленности соляную кислоту получали путем взаимодействия хлорида натрия с кислотами, обычно с серной:

2NaCl + H 2 SO 4 = 2HCl + Na 2 SO 4

Но этот способ недостаточно эффективен, а чистота получаемого продукта невысока. Сейчас используется другой способ получения (из простых веществ) хлористого водорода по формуле:

H 2 + Cl 2 = 2HCl

Для реализации такого способа существуют специальные установки, где оба газа подаются непрерывным потоком на пламя, в котором происходит взаимодействие. Водород подается в небольшом избытке для того, чтобы прореагировал весь хлор и не загрязнял получаемый продукт. Далее хлороводород растворяют в воде и получают соляную кислоту.

В лаборатории возможны более разнообразные способы получения, например гидролиз галогенидов фосфора:

PCl 5 + H 2 O = POCl 3 + 2HCl

Получить соляную кислоту можно и путем гидролиза кристаллогидратов некоторых хлоридов металлов при повышенной температуре:

AlCl 3 ·6H 2 O = Al(OH) 3 + 3HCl + 3H 2 O

Также хлороводород является побочным продуктом реакций хлорирования многих органических соединений.

Применение

Сам хлороводород на практике применения не находит, так как очень быстро впитывает воду из воздуха. Почти весь произведенный хлористый водород идет на производство соляной кислоты.

Применяется в металлургии для очистки поверхности металлов, а также для получения чистых металлов из их руд. Это происходит путем перевода их в хлориды, которые легко восстанавливаются. Так, например, получают титан и цирконий. Широкое применение кислота получила в органическом синтезе (реакции гидрогалогенирования). Также из соляной кислоты иногда получают чистый хлор.

Находит применение и в медицине как лекарство в смеси с пепсином. Его принимают при недостаточной кислотности желудка. Соляная кислота используется в пищевой промышленности в качестве добавки Е507 (регулятор кислотности).

Техника безопасности

При высоких концентрациях соляная кислота - это едкое вещество. Попадая на кожу, она вызывает химические ожоги. Вдыхание газообразного хлороводорода вызывает кашель, удушье, а в тяжелых случаях даже отек легких, который может привести к смерти.

По ГОСТу имеет второй класс опасности. Хлористый водород по стандарту NFPA 704 имеет третью категорию опасности из четырех. Кратковременное воздействие может привести к серьезным временным или умеренным остаточным последствиям.

Первая помощь

При попадании соляной кислоты на кожу рана должна быть обильно промыта водой и слабым раствором щелочи или ее соли (например, содой).

При попадании паров хлороводорода внутрь дыхательных путей пострадавшего необходимо вынести на свежий воздух и сделать ингаляцию кислородом. После этого следует прополоскать горло, промыть глаза и нос 2 % раствором гидрокарбоната натрия. Если соляная кислота попала в глаза, то после этого стоит закапать их раствором новокаина и дикаина с адреналином.

Похожие статьи