Расчет диффузора. Расчет системы вентиляции и ее отдельных элементов: площади, диаметров труб, параметров нагревателей и диффузоров. Требования, предъявляемые к современным воздухораспределителям

Различают два основных способа вентиляции зданий:

  • вентиляция вытеснением;
  • вентиляция перемешиванием.

Преимущественно используется для вентилирования больших промышленных помещений, поскольку она может эффективно удалять излишки тепловыделений, если правильно рассчитана. Воздух пода¬ется на нижний уровень помещения и течет в рабочую зону с малой скоростью. Этот воздух должен быть несколько холоднее, чем воздух помещения, чтобы работал принцип вытеснения. Этот метод обеспечивает прекрасное качество воздуха, но он менее пригоден для использования в офисах и других небольших помещениях, поскольку терминал направленной подачи воздуха занимает довольно много места и часто непросто избежать сквозняков в рабочей зоне.

Воздух, который несколько холоднее, чем воздух в помещении, подается в рабочую зону.


Является предпочтительным способом раздачи воздуха в ситуациях, когда необходима так называемая комфортная вентиляция. Основой этого метода является то, что подаваемый воздух поступает в рабочую зону уже смешанным с воздухом помещения. Расчет системы вентиляции должен быть сделан таким образом, чтобы воздух, циркулирующий в рабочей зоне, был достаточно комфортным. Другими словами, скорость воздуха не должна быть слишком большой и температура внутри помещения должна быть более или менее однородной.

Воздух подается одним или несколькими воздушными струями вне рабочей зоны.


Воздушная струя, входящая в помещение, вовлекает в поток и перемешивает большие объемы окружающего воздуха. В результате объем воздушной струи увеличивается, тогда, как ее скорость снижается тем больше, чем дальше он проникнет в помещение. Подмешивание окружающего воздуха в воздушный поток называется эжекцией.

Движения воздуха, вызванные воздушной струей, вскоре тщательно перемешивают весь воздух в помещении. Загрязняющие примеси, находящиеся в воздухе, не только распыляются, но и равномерно распределяются. Температура в различных частях помещения также выравнивается. При расчетах вентиляции перемешиванием самым важным моментом является обеспечение того, чтобы скорость воздуха в рабочей зоне не была слишком высокой, иначе возникает ощущение сквозняка.


Воздушная струя состоит из нескольких зон с различными режимами потоков и скоростями перемещения воздуха. Зона, представляющая наибольший практический интерес, — это основной участок. Скорость в центре (скорость вокруг центральной оси) является обратно пропорциональной расстоянию от диффузора или клапана, т. е. чем дальше от диффузора, тем меньше скорость воздуха. Воздушная струя полностью развивается на основном участке, и превалирующие здесь условия будут оказывать решающее воздействие на режим потоков в помещении в целом.

От формы диффузора или проходного отверстия воздухораспределителя зависит форма воздушной струи. Круглые или прямоугольные проходные отверстия создают компактную воздушную струю конической формы. Для того чтобы воздушная струя была абсолютно плоской, проходное отверстие должно быть более чем в двадцать раз шире своей высоты или таким же широким, как помещение. Воздушные веерные струи получаются при прохождении через совершенно круглые проходные отверстия, где воздух может распространяться в любых направлениях, как в приточных диффузорах.


Коэффициент диффузора

Коэффициент диффузора — постоянная величина, которая зависит от формы диффузора или клапана. Коэффициент можно рассчитать теоретически с использованием следующих факторов: импульсное рассеивание и сужение воздушной струи в точке, где она подается в помещение, и степень турбулентности, созданная диффузором или клапаном.

На практике коэффициент определяют для каждого типа диффузора или клапана, измеряя скорость воздуха как минимум в восьми точках, находящихся на разном расстоянии от диффузора/клапана и не менее чем в 30 см друг от друга. Эти значения затем наносят на график с логарифмическим масштабом, который показывает замеренные величины для основного участка воздушной струи, а это, в свою очередь, дает значение для константы.

Коэффициент диффузора дает возможность рассчитать скорости воздушной струи и прогнозировать распределение и путь воздушной струи. Этот коэффициент отличен от коэффициента К, который используется для введения верного значения объема воздуха, выходящего из приточного воздухораспределителя или ирисового.



Теперь линия должна быть нарисована от пересечения углового коэффициента 1 на шкале у, чтобы получить значение для коэффициента диффузора К.

Используя значения, полученные для основного участка воздушной струи, тангенс (коэффициент угла) выводится на угол -1 (45°).

Эффект настилания

Если воздухораспределитель установлен в достаточной близости от плоской поверхности (обычно это потолок), выходящая воздушная струя отклоняется в ее сторону и стремится течь непосредственно по поверхности. Этот эффект возникает вследствие образования разряжения между струей и поверхностью, а так как нет возможности подмеса воздуха со стороны поверхности, то струя отклоняется в ее сторону. Это явление называется настилающим эффектом.

Практические эксперименты показали, что расстояние между верхней кромкой диффузора или клапаном и потолком ("а" на рис. выше) не должно превышать 30 см, чтобы возник настилающий эффект. Эффект настилания можно использовать для того, чтобы увеличить путь холодной воздушной струи вдоль потолка до внедрения ее в рабочую зону. Коэффициент диффузора будет несколько выше при возникновении насти¬лающего эффекта, чем при свободном воздушном потоке. Так же важно знать, как крепится диффузор или клапан при использовании коэффициента диффузора для проведения различных расчетов.

Картина распределения становится более сложной, когда подаваемый воздух теплее или холоднее, чем внутри помещения. Тепловая энергия, возникающая в результате разницы в плотности воздуха при различных температурах, заставляет более холодный воздушный поток двигаться вниз (струя тонет), а более теплый воздух устремляется вверх (струя всплывает). Это означает, что две различные силы оказывают воздействие на холодную струю, находящуюся у потолка: эффект настилания, который старается прижать ее к потолку, и тепловая энергия, которая стремится опустить ее к полу. На определенном расстоянии от выхода диффузора или клапана тепловая энергия будет преобладать, и воздушная струя в конечном итоге отклонится от потолка.

Отклонение струи и точка отрыва могут быть рассчитаны с помощью формул, основанных на температурных дифференциалах, на типе выходного отверстия диффузора или клапана, а также на скорости воздушного потока и т. д.

Отклонение

Отклонение от потолка к центральной оси воздушного потока (Y) может быть рассчитано следующим образом:

Точка отрыва

Точка, где коническая воздушная струя оторвется от потопе составит:

После того, как струя оторвется от потолка, новое направление струи может быть рассчитано при помощи формулы для отклонения (cм. выше). Под расстоянием (х) в этом случае понимается расстояние от точки отрыва.


Для большинства воздухораспределительных устройств в Каталоге приведена характеристика, называемая длина струи. Под длиной струи понимается расстояние от приточного отверстия диффузора или клапана до сечения воздушной струи, в котором скорость ядра потока снижается до определенного значения, обычно до 0,2 м/сек. Длина струи обозначается 10,2 и измеряется в метрах.

Первое, что принимается во внимание при расчетах систем воздухораспределения, — это то, как избежать слишком высоких скоростей воздушного потока в рабочей зоне. Но, как правило, в рабочую зону попадает отраженный или обратный ток этой струи.

Скорость обратного воздушного потока составляет примерно 70% от скорости основной воздушной струи у стены. Это означает, что диффузор или клапан, установленный на задней стене, подающий струю воздуха с конечной скоростью 0,2 м/сек, вызовет скорость воздуха в обратном потоке 0,14 м/сек. Что соответствует комфортной вентиляции в рабочей зоне, скорость воздуха в которой не должна превышать 0,15 м/с.

Длина струи для описанного выше диффузора или клапана такая же, как длина помещения, и в данном примере является прекрасным выбором. Приемлемая длина струи для установленного на стене диффузора лежит между 70 % и 100 % длины помещения.

Обтекание препятствий

Воздушная струя при наличии препятствий на потолке в виде перекрытий, светильников и др., если они расположены слишком близко от диффузора, может отклониться и опуститься в рабочую зону. А потому необходимо знать, какое расстояние должно быть (А на графике) между устройством, подающим воздух, и препятствиями для свободного продвижения струи воздуха.

Расстояние до препятствия (эмпирическое)

График показывает минимальное расстояние до препятствия как функцию высоты препятствия (h на рис.) и температуры воздушной струи в самой низкой точке.


Если подаваемый вдоль потолка воздух холоднее воздуха в помещении, важно, чтобы скорость воздушной струи была достаточно высока, чтобы обеспечить ее прилегание к потолку. Если ее скорость будет слишком мала, существует риск того, что тепловая энергия может- на править воздушную струю вниз, к полу, слишком рано. На определенном расстоянии от диффузора, подающего воздух, воздушная струя в любом случае отделится от потолка и отклонится вниз. Это отклонение случится быстрее для воздушной струи, которая имеет температуру ниже комнатной, а потому в этом случае длина струи будет короче.

Воздушная струя должна пройти, по крайней мере, 60% глубины помещения, прежде чем отделится от потолка. Максимальная скорость воздуха в рабочей зоне будет, таким образом, почти такой же, как и при подаче изотермического воздуха.

Когда температура подаваемого воздуха ниже комнатной, воздух в помещении будет до некоторой степени охлаждаться. Приемлемый уровень охлаждения (известный как максимальный эффект охлаждения) зависит от требований к скорости воздуха в рабочей зоне, от расстояния до диффузора, на котором воздушная струя отделяется от потолка, а также от типа диффузора и его местоположения.

В общем, большая степень охлаждения достигается при использовании потолочного, а не настенного диффузора. Это происходит потому, что потолочный диффузор распространяет воздух во всех направлениях, а потому ему требуется меньше времени для смешивания с окружающим воздухом и для выравнивания температуры.

Поправки для длины струи (эмпирические)

График можно использовать для получения примерного значения для длины неизотермической струи.

Хотя для существует множество программ, многие параметры все еще определяются по старинке, с помощью формул. Расчет нагрузки на вентиляцию, площади, мощности и параметров отдельных элементов производят после составления схемы и распределения оборудования.

Это сложная задача, которая под силу лишь профессионалам. Но если необходимо подсчитать площадь некоторых элементов вентиляции или сечение воздуховодов для небольшого коттеджа, реально справиться самостоятельно.

Расчет воздухообмена

Если в помещении нет ядовитых выделений или их объем находится в допустимых пределах, воздухообмен или нагрузка на вентиляцию рассчитывается по формуле:

R = n * R 1,

здесь R1 – потребность в воздухе одного сотрудника, в куб.м\час, n – количество постоянных сотрудников в помещении.

Если объем помещения на одного сотрудника составляет больше 40 кубометров и работает естественная вентиляция, не нужно рассчитывать воздухообмен.

Для помещений бытового, санитарного и подсобного назначения расчет вентиляции по вредностям производится на основании утвержденных норм кратности воздухообмена:

  • для административных зданий (вытяжка) – 1,5;
  • холлы (подача) – 2;
  • конференц-залы до 100 человек вместимостью (по подаче и вытяжке) – 3;
  • комнаты отдыха: приток 5, вытяжка 4.

Для производственных помещений, в которых постоянно или периодически в воздух выделяются опасные вещества, расчет вентиляции производится по вредностям.

Воздухообмен по вредностям (парам и газам) определяют по формуле:

Q = K \(k 2- k 1),

здесь К – количество пара или газа, появляющееся в здании, в мг\ч, k2 – содержание пара или газа в оттоке, обычно величина равна ПДК, k1 – содержание газа или пара в приточке.

Разрешается концентрация вредностей в приточке до 1\3 от ПДК.

Для помещений с выделением избыточного тепла воздухообмен рассчитывается по формуле:

Q = G изб\ c (tyx tn ),

здесь Gизб – избыточное тепло, вытягиваемое наружу, измеряется в Вт, с удельная теплоемкость по массе, с=1 кДж, tyx – температура удаляемого из помещения воздуха, tn – температура приточки.

Расчет тепловой нагрузки

Расчет тепловой нагрузки на вентиляцию осуществляется по формуле:

Q в= V н * k * p * C р(t вн – t нро),

в формуле расчета тепловой нагрузки на вентиляцию – внешний объем строения в кубометрах, k – кратность воздухообмена, tвн – температура в здании средняя, в градусах Цельсия, tнро – температура воздуха снаружи, используемая при расчетах отопления, в градусах Цельсия, р – плотность воздуха, в кг\кубометр, Ср – теплоемкость воздуха, в кДж\кубометр Цельсия.

Если температура воздуха ниже tнро снижается кратность обмена воздуха, а показатель расхода тепла считается равной , постоянной величиной.

Если при расчете тепловой нагрузки на вентиляцию невозможно уменьшить кратность воздухообмена, расход тепла рассчитывают по температуре отопления.

Расход тепла на вентиляцию

Удельный годовой расход тепла на вентиляцию рассчитывается так:

Q= * b * (1-E),

в формуле для расчета расхода тепла на вентиляцию Qo – общие теплопотери строения за сезон отопления, Qb – поступления тепла бытовые, Qs – поступления тепла снаружи (солнце), n – коэффициент тепловой инерции стен и перекрытий, E – понижающий коэффициент. Для индивидуальных отопительных систем 0,15 , для центральных 0,1 , b – коэффициент теплопотерь:

  • 1,11 – для башенных строений;
  • 1,13 – для строений многосекционных и многоподъездных;
  • 1,07 – для строений с теплыми чердаками и подвалами.

Расчет диаметра воздуховодов

Диаметры и сечения рассчитывают после того, как составлена общая схема системы. При расчетах диаметров воздуховодов вентиляции учитывают следующие показатели:

  • Объем воздуха (приточного или вытяжного), который должен пройти через трубу за заданный промежуток времени, куб.м\ч;
  • Скорость движения воздуха. Если при расчетах вентиляционных труб скорость движения потока занижена, установят воздуховоды слишком большого сечения, что влечет дополнительные расходы. Завышенная скорость приводит к появлению вибраций, усилению аэродинамического гула и повышению мощности оборудования. Скорость движения на притоке 1,5 – 8 м\сек, она меняется в зависимости от участка;
  • Материал вентиляционной трубы. При расчете диаметра этот показатель влияет на сопротивление стенок. Например, наиболее высокое сопротивление оказывает черная сталь с шероховатыми стенками. Поэтому расчетный диаметр воздуховода вентиляции придется немного увеличить по сравнению с нормами для пластика или нержавейки.

Таблица 1 . Оптимальная скорость воздушного потока в трубах вентиляции.

Когда известна пропускная способность будущих воздуховодов, можно рассчитать сечение воздуховода вентиляции:

S = R \3600 v ,

здесь v – скорость движения воздушного потока, в м\с, R – расход воздуха, кубометры\ч.

Число 3600 – временной коэффициент.

здесь: D – диаметр вентиляционной трубы, м.

Расчет площади элементов вентиляции

Расчет площади вентиляции необходим в том случае, когда элементы изготавливаются из листового металла и нужно определить количество и стоимость материала.

Площадь вентиляции рассчитывают электронные калькуляторы или специальные программы, их во множестве можно найти в интернете.

Мы приведем несколько табличных значений наиболее популярных элементов вентиляции.

Диаметр, мм Длина, м
1 1,5 2 2,5
100 0,3 0,5 0,6 0,8
125 0,4 0,6 0,8 1
160 0,5 0,8 1 1,3
200 0,6 0,9 1,3 1,6
250 0,8 1,2 1,6 2
280 0,9 1,3 1,8 2,2
315 1 1,5 2 2,5

Таблица 2 . Площадь прямых воздуховодов круглого сечения.

Значение площади в м. кв. на пересечении горизонтальной и вертикальной строчки.

Диаметр, мм Угол, град
15 30 45 60 90
100 0,04 0,05 0,06 0,06 0,08
125 0,05 0,06 0,08 0,09 0,12
160 0,07 0,09 0,11 0,13 0,18
200 0,1 0,13 0,16 0,19 0,26
250 0,13 0,18 0,23 0,28 0,39
280 0,15 0,22 0,28 0,35 0,47
315 0,18 0,26 0,34 0,42 0,59

Таблица 3 . Расчет площади отводов и полуотводов круглого сечения.

Расчет диффузоров и решеток

Диффузоры используются для подачи или удаления воздуха из помещения. От правильности расчета количества и расположения диффузоров вентиляции зависит чистота и температура воздуха в каждом уголке помещения. Если установить диффузоров больше, увеличится давление в системе, а скорость падает.

Количество диффузоров вентиляции рассчитывается так:

N = R \(2820 * v * D * D ),

здесь R – пропускная способность, в куб.м\час, v – скорость воздуха, м\с, D – диаметр одного диффузора в метрах.

Количество вентиляционных решеток можно рассчитать по формуле:

N = R \(3600 * v * S ),

здесь R – расход воздуха в куб.м\час, v – скорость воздуха в системе, м\с, S – площадь сечения одной решетки, кв.м.

Расчет канального нагревателя

Расчет калорифера вентиляции электрического типа производится так:

P = v * 0,36 * ∆ T

здесь v – объем пропускаемого через калорифер воздуха в куб.м.\час, ∆T – разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.

Этот показатель варьирует в пределах 10 – 20, точная цифра устанавливается клиентом.

Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:

Аф= R * p \3600 * Vp ,

здесь R – объем расхода приточки, куб.м.\ч, p – плотность атмосферного воздуха, кг\куб.м, Vp – массовая скорость воздуха на участке.

Размер сечения необходим для определения габаритов нагревателя вентиляции. Если по расчету площадь сечения получается чересчур большой, необходимо рассмотреть вариант из каскада теплобменников с суммарной расчетной площадью.

Показатель массовой скорости определяется через фронтальную площадь теплообменников:

Vp = R * p \3600 * A ф.факт

Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:

Q =0,278 * W * c (T п- T у),

здесь W – расход теплого воздуха, кг\час, Тп – температура приточного воздуха, градусы Цельсия, Ту – температура уличного воздуха, градусы Цельсия, c – удельная теплоемкость воздуха, постоянная величина 1,005.

Так как в приточных системах вентиляторы размещаются перед теплообменником, расход теплого воздуха вычисляем так:

W = R * p

Рассчитывая калорифер вентиляции, следует определить поверхность нагрева:

Апн=1,2 Q \ k (T с.т- T с.в),

здесь k – коэффициент отдачи калорифером тепла, Tс.т средняя температура теплоносителя, в градусах Цельсия, Tс.в – средняя температура приточки, 1,2 – коэффициент остывания.

Расчет вытесняющей вентиляции

При вытесняющей вентиляции в помещении оборудуются рассчитанные восходящие потоки воздуха в местах повышенного выделения тепла. Снизу подается прохладный чистый воздух, который постепенно поднимается и в верхней части помещения удаляется наружу вместе с избытком тепла или влаги.

При грамотном расчете вытесняющая вентиляция намного эффективнее перемешивающей в помещениях следующих типов:

  • залы для посетителей в заведениях общепита;
  • конференц-залы;
  • любые залы с высокими потолками;
  • ученические аудитории.

Рассчитанная вентиляция вытесняет менее эффективно если:

  • потолки ниже 2м 30 см;
  • главная проблема помещения – повышенное выделение тепла;
  • необходимо понизить температуру в помещениях с низкими потолками;
  • в зале мощные завихрения воздуха;
  • температура вредностей ниже, температуры воздуха в помещении.

Вытесняющая вентиляция рассчитывается исходя из того, что тепловая нагрузка на помещение составляет 65 – 70 Вт\кв.м, при расходе до 50 л на кубометр воздуха в час. Когда тепловые нагрузки выше, а расход ниже, необходимо организовывать перемешивающую систему, комбинированную с охлаждением сверху.

Расчет диффузора

Исходные данные:

· Рабочий диапазон частот 5000…10000 Гц;

· Номинальное давление Рн = 0.33 Па;

· Максимальная амплитуда смещения xm = 0.3410-3 м.;

· Частота механического резонанса fp = 3000Гц;

· Масса звуковой катушки mзк 0.0003 кг.

Выбираем материал для изготовления диффузора.

В качестве материала для изготовления диффузора используется композиция бумажной массы с плотностью д 0.9103 и значение модуля упругости такой композиции равно Е = 9109 .

Вычисляем радиус диффузора таким образом, чтобы обеспечить заданное номинальное давление Рн при заданном уровне нелинейных искажений (который определяется максимальной амплитудой xm).

rд = = 0.017 м.

Определим массу диффузора:

А= 0.000138 м.

Расчет гибкой подвески

Исходные данные:

· Частота резонанса подвижной системы fр = 3000 Гц;

· Масса звуковой катушки mзк 0.0003 кг;

· Масса диффузора 0.00015 кг;

· Радиус диффузора rд = 0.017 м.

Определим массу подвижной системы:

m = mд + mзк + mc = 0.00047 кг.,

mc = 50 = 0.00002 кг.

Определим общую гибкость подвески при помощи известного значения частоты механического резонанса:

Распределяем гибкость между элементами подвески - воротом и центрирующей шайбой сш. для широкополосного громкоговорителя выполняется следующее условие:

Считая, что гибкость и сш соединены последовательно, получаем:

свом = c(1+) = 1,810-5 ,

сш = = 910-6 .

Для изготовления гофра будем использовать Целюлоза сулфатная беленая 30-70%

Профиль гофра - плоский

Находим ширину гибкого ворота по формуле:

bвом = ?вор= 0.0016м.,

Вом = 0.7= 9.6310-5 м.,

k3 - коэффициент, который выбирается в зависимости от профиля гофра k3 = 1,

k4 - коэффициент, который определяется отношением k4 = 1.

Задаем число гофров равным 2 и вычисляем шаг гофра:

lвом = = 0.00052 м.

Тогда можно выбрать тип центрирующей шайбы и материал для её изготовления, профиль шайбы и соотношение между высотой шайбы и её шагом:

материал для изготовления центрирующей шайбы - креп-шифон,

профиль центрирующей шайбы - трапециевидный,

отношение высоты шайбы к её шагу =0.

Определим ширину центрирующей шайбы bш:

Общая формула имеет вид:

Ш = 1= 0.000138 м.,

Производя все расчеты с данной методикой, получаем:

bш1 = 0.0012 м.,

bш2 = 0.0012 м.

Значение bш возьмем как среднее между bш1 и bш2, тогда

Определим число шагов шайбы (nш) и определим этот шаг (lш):

Расчет магнитной системы

Исходные данные:

· Номинальное звуковое давление Рн = 0.33 Па;

· Масса подвижной системы m = 0.00047 кг,

· Длина провода звуковой катушки lп= 2.34 м;

· Ширина магнитного зазора bз = 0.001 м;

· Высота магнитного зазора hмз = 0.0028 м;

· Диаметр керна dk = 0.01 м;

· Радиус диффузора rд = 0.017м;

· Номинальная электрическая мощность Р = 1.2 Вт;

· Электрическое сопротивление катушки z = 4 Ом.

Расчет магнитной системы производят в три этапа, но перед началом расчетов определим основной входной параметр системы - значение магнитной индукции в зазоре Вз.

Вз = = 0.67 Тл,

0 - плотность воздуха 0 = 1.29 .

Первый этап расчета магнитной системы:

1. Выбираем тип магнитной системы.

2. В качестве материала, из которого изготавливается магнит, выберем прессованный магнит ЗБА. Зададимся значениями индукции Вр и напряженности Нр для данного материала магнита:

Вр = 0.95 Тл;

3. Найдем объем магнита:

Vм = = 1.310-6 м3.

4. Определим магнитную проводимость зазора, пользуясь формулой:

gз = = 9.93710-7 См.

5. Определим высоту магнита:

hм = = 0.0149 м.

6. Определяем площадь сечения и диаметр магнитов:

Sм = = 0.00009 м2,

Внутренний диаметр для кольцевого магнита:

dм2 = dk + = 0.0157м.

7. Задаем размеры магнитопровода. Внутренний размер

Толщину верхнего и нижнего фланцев принимаем такой, что равняется высоте зазора hмз.

Второй этап расчета магнитной системы:

1. Рассчитаем проводимость всех зон рассеивания и определим полную проводимость магнитной системы:

g = gз + g1 + g2 + g3 + g4 + g5.

g1 = 2.5 9.3810-8 См;

Пм - периметр сечения магнита, который включает в себя длину внутреннего и внешнего окружностей Пм = 2(0.5 dм1 + 0.5 dм2) 0.584 м;

hм - высота магнита.

g2 = 0.26 dk= 1.0310-8 См;

dk - диаметр керна.

g3 = dk= 3.5310-8 См;

Внешний диаметр фланца,

Ширина воздушного зазора.

g4 = 2 dkln() = 5,9110-8 См;

Внутренний диаметр кернового магнита,

Высота магнита.

Тогда g = 3.0010-7 См.

2. Пользуясь кривой размагничивания В(Н), строим отношение как функцию Н (рис.6).

3. Исходя из магнитного закона Ома (Ф = gFм), рассчитаем фактическое значение отношения:

4. Пользуясь графиками = f(H) и В(Н), находим фактическую рабочую точку на кривой размагничивания и соответствующее ей значение магнитной индукции:

Нрф = 24103 ,

Врф = 1.1 Тл.

5. Используя магнитный закон Ома, находим:

Вф = Врф Sм= 0.438Тл.

Третий этап расчета магнитной системы:

Сравним фактическую магнитную индукцию в зазоре Вф с необходимым значением индукции Вз и фактическое значение удельной энергии 0.5 Нрф Врф с максимальным для данного материала 0.5 Нр Вр. Отклонение от этих значений не больше, чем на 10, т.е. Вф = (0.8…1.1) Вз и Нрф Врф = (0.9…1) Нр Вр, является допустимым.

Главная / Печь

Для создания действительно эффективной вентиляционной системы следует решить массу задач, одной из которых является грамотное воздухораспределение. Не акцентируя внимания на этом аспекте при проектировании систем вентиляции и кондиционирования в итоге можно получить повышенную шумность, сквозняки, наличие застойных зон даже в вентиляционных системах с высокими характеристиками эффективности. Важнейшим устройством, влияющим на правильное распределение воздушных потоков по помещению, является воздухораспределитель. В зависимости от монтажа и конструктивных особенностей , эти устройства называют решетками или диффузорами.

Классификация воздухораспределителей

Все воздухораспределители классифицируются:

  • По назначению. Они могут быть приточными, вытяжными и переточными.
  • По степени воздействия на воздушные массы. Эти устройства могут быть перемешивающими и вытесняющими.
  • По монтажу. Воздухораспределители могут применяться для внутренней или наружной установки.

Внутренние диффузоры подразделяются на потолочные, напольные или настенные.

Приточные, в свою очередь, классифицируются по форме исходящей воздушной струи, которая может быть:

  • Вертикальными компактными воздушными струями.
  • Коническими струями.
  • Полными и неполными веерными потоками воздуха.

В этой публикации мы рассмотрим наиболее распространенные диффузоры: потолочные, щелевые, сопловые и низкоскоростные.

Требования, предъявляемые к современным воздухораспределителям

Для многих слово вентиляция является синонимом постоянного фонового шума. Последствия этого хроническая усталость, раздражительность и головная боль. Исходя из этого, воздухораспределитель должен быть тихим.

Кроме этого, не совсем приятно находиться в помещении, если постоянно на себе ощущаешь охлажденные воздушные потоки. Это не только неприятно, но и может привести к болезни, поэтому требование второе: диффузор не должен создавать сквозняков.

Различные обстоятельства часто требуют смены обстановки. Можно поменять мебель или переставить местами офисную технику. Также несложно заказать новый оригинальный дизайн помещения, но сменить воздухораспределители, которые рассчитывались еще на этапе проектирования, достаточно трудно. Из этого «вытекает» требование третье: воздухораспределитель должен быть малозаметен, или как говорят дизайнеры «растворен в интерьере помещения».

Щелевые распределители воздушных потоков

Методика расчета КВУ аналогична расчету воздухозаборной решетки.

Ориентировочную площадь живого сечения принимаем аналогично (18)

По техническим характеристикам с сайта производителя принимаем клапан КВУ 1600х1000 , с площадью живого сечения = 1,48 м 2 .

Принят аналогично сопротивлению дроссельного клапана при угле поворота лопаток 15⁰ .

3.3. Аэродинамический расчет неразветвленного воздуховода

Задачей аэродинамического расчета неразветвленного воздуховода является выявление угла установки регулируемого устройства в каждом приточном отверстии, обеспечивающее истечение в помещение заданного расхода воздуха. При этом определяется: потери давления в воздухораспределителе и максимальное аэродинамическое сопротивление воздуховода и вентиляционной сети в целом.

При установке многостворчатого регулятора расхода на ответвлении (решетка АДН-К ), за пределами магистрального воздуховода практически исключается влияние положения лопаток регулятора расхода на потери давления в транзитном потоке. Для расчета воздуховодов существуют аэродинамические характеристики, учитывающие положение (угол установки) лопаток регуляторов: расхода, направления, и формы струи.

Воздуховод разбивают на отдельные участки с неизменным расходом воздуха по длине. Нумерацию участков начинают с конца воздуховода. Так как в концевой решетке регулятор расхода не устанавливается (устанавливается решетка АДН-К 400х800 ), давление перед второй (или каждой последующей) решеткой известно. С учетом этого определяются расчетные потери давления для нахождения по аэродинамичекой характеристике угла поворота (положени) регулятора расхода.

3.3.1. Методика расчета неразветвленного воздуховода П1

Исходные данные

– 22980 м 3 /ч;

– 3830 м 3 /ч;

Расстояние между решетками – 2,93 м;

Угол наклона приточной неполной веерной струи – 27⁰;

Определяем размеры начального сечения воздуховода концевого участка 1-2 (см. графическую часть), стремясь сохранить постоянной его высоту.

Елена Гальцева - инженер-проектировщик.

Основные используемые формулы:

1.Расчет производительности вентилятора:

L=VxK


L – производительность, которая должна быть у вентилятора, чтобы справиться с поставленной перед ним задачей, м 3 /час.

V – объем помещения (произведению S площади помещения, на h – его высоту), м 3 .

K – нормавоздухообмена для различных помещений (см. табл.1 в статье "как подобрать вентилятор").



2. Для расчета количества диффузоров используют формулу:

N=L/(2820xVxd 2)

N – кол-во диффузоров, шт;

L – расход воздуха, м 3 /час;

D – диаметр диффузора, м;

3. Для подбора количества решеток используют следующую формулу: N = L/(3600xVxS)

N– кол-во решеток;

L – расход воздуха, м 3 /час;

V – скорость движения воздуха, м/сек,

(скорость воздуха для офисных помещений 2-3 м/сек, для жилых помещений 1,5-1,8 м/сек;

S – площадь живого сечения решетки, м 2 .

После составления полной схемы размещения оборудования, определяются диаметры воздуховодов.


4. Зная кол-во воздуха, которое необходимо подать в каждое помещение, можно подобрать сечение воздуховодапо формуле:

S=L/Vx3600

S – площадь поперечного сечения, м 2 ;

L – расход воздуха, м 3 /час;

V – скорость воздуха в зависимости от типа воздуховода, т.е. магистральный или ответвления, м/сек.

5. Зная S , вычисляем диаметр воздуховода:

D= 2x √(S/ 3.14)

6. Мощность электрического канального нагревателя рассчитывается по формуле:

P=Vx0,36x ∆T

Р – мощность нагревателя, Вт;

V – объём воздуха проходящий через нагреватель, м 3 /час (= производительности вентилятора);

∆Т – увеличение температуры воздуха, 0 С (т.е. перепад температур – наружного и поступающего из системы в помещение – который должен обеспечить нагреватель).

∆Т рассчитывается из пожеланий заказчика и наличия у него для этого необходимой электрической мощности. Целесообразней всего брать ∆Т в пределах 10-20 ºС.


Основные принципы:

Все помещения в здании разделяются на те, в которые следует подавать приточный воздух (спальни, детские комнаты и т. д.), на те, из которых следует производить вытяжку (кухни, санузлы), и смешанные (подвалы, чердаки, гаражи, и т. д.).
Для подачи воздуха в те помещения, из которых производится преимущественно вытяжка, устанавливаются, например, укороченные двери или специальные решетки, что позволяет обеспечить достаточный воздухообмен путем перетекания воздуха из других помещений квартиры.

Сегодня кроме простых приточных установок (см. рис.), предлагаются установки с рекуперацией тепла. Система с рекуперацией тепла состоит из двух отдельных контуров; по одному свежий воздух подается в жилое пространство, по другому отводится отработанный. Требуемое количество наружного воздуха подается вентилятором, затем производится его очистка в фильтрах. Другой вентилятор забирает отработанный воздух, направляет его в теплообменник, для передачи тепла отработанного воздуха наружному приточному. Очень хорошо зарекомендовали себя установки LMF (Италия) производительностью от900до 4200м 3 /час.


Aventis LMF

Проектирование.

При проектировании вентустановок прежде всего следует определить:
- место установки вентиляционного агрегата
- расположение приточных и вытяжных отверстий
- места прокладки воздуховодов в помещениях
- определить помещения, в которые следует подавать приточный воздух, производить вытяжку, и смешанные помещения
Чтобы гарантированно избежать в помещении запахов и остатков вредных веществ, расход вытяжного воздуха может превышать расход приточного на 10% в системах с механической подачей. В этом случае образуется незначительное разрежение, благодаря которому предотвращается попадание вытяжного воздуха назад в помещение.

Воздуховоды.

В приточных и вытяжных системах лучше использовать воздуховодов из оцинкованной стали, так как гладкие трубы имеют наименьшее сопротивление.

Размеры воздуховодов определяются по расходу приточного и вытяжного воздуха (см. формулу №5).

Для снижения потерь давления, а также для предотвращения аэродинамических шумов из-за слишком высокой скорости воздуха, при проектировании воздуховодов следует обеспечивать:

  • простое и регулярное расположение приточно-вытяжных шахт;
  • как можно более короткие участки воздуховодов;
  • как можно меньшее количество изгибов и ответвлений;
  • герметичное исполнение соединений.

Приточные и вытяжные решетки.

Приточные и вытяжные решетки должны быть расположены в верхней части стен или на потолке. Количество решеток зависит от их характеристик и от расхода воздуха (см. формулы №2 и 3). Через приточную решетку производится раздача воздуха в помещение, поэтому его конструкция должна обеспечивать хорошее распределение воздуха. Для хорошего воздухообмена приточные и вытяжные решетки желательно располагать напротив друг друга.


Пример расчета вентиляторов для системы вентиляции.

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Тип

Скорость воздуха, м/с

Магистральные воздуховоды

6,0-8,0

Боковые ответвления

4,0-5,0

Распределительные воздуховоды

1,5-2,0

Приточные решетки у потолка

1,0-3,0

Вытяжные решетки

1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Похожие статьи