Как отмечать координаты на координатной плоскости. Декартовы координаты точек плоскости. Уравнение окружности

Математика - наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.

Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.

Определение понятия

Координатная плоскость - это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат - строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Историческая справка

Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.

Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь "декартовой".

Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты - одну координату буквенную, вторую - цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Оси координат

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось - абсцисс - горизонтальная. Она обозначается как (Ox ). Вторая ось - ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy ). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0 . Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината - положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной - ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Работа с координатной плоскостью

Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.

В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

Правила построения плоскости

Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная - ординат. При этом важно помнить, что оси пересекаются под прямым углом.

Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

Отмечаем точку

Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая - по оси ординат.

Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy . Далее провести воображаемые линии от данных обозначений и найти место их пересечения - это и будет заданная точка.

Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.

Размещаем фигуру

Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.

В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами Рассмотрим нанесение прямоугольника, треугольника и окружности.

Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.

Нанесение треугольника ничем не отличается. Единственное - углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.

Касательно окружности тут следует знать координаты двух точек. Первая точка - центр окружности, вторая - точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.

Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.

Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.

Выводы

Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.

Мы с вами выяснили, что координатная плоскость - это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.

Основной навык, который следует выработать при работе с координатной плоскостью, - умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.

Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.

На плоскости. Пусть одна будет x, другая – y. И пусть эти прямые будут взаимно перпендикулярны (то есть пересекаются под прямым углом). Причем точка их пересечения будет началом координат для обеих прямых, а единичный отрезок одинаков (рис. 1).

Таким образом, мы получили прямоугольную систему координат , а наша плоскость стала координатной. Прямые x и y называют осями координат. Причем, ось x – осью абсцисс, а ось y – осью ординат. Обозначается подобная плоскость обычно по названию осей и точке отсчета – xOy. Прямоугольную систему координат также называют декартовой системой координат , так как впервые ее начал активно использовать французский математик и философ - Рене Декарт.

Прямоугольные углы, образованные прямыми x и y, называют координатными углами . Каждый угол имеет свой номер как показано на рис. 2.

Итак, когда мы говорили про координатную прямую у всякой точки этой прямой была одна координата. Теперь, когда идет речь о координатной плоскости, то у каждой точки этой плоскости уже будут две координаты. Одна соответствует прямой x (эту координату называют абсциссой ), другая соответствует прямой y (эту координату называют ординатой ). Записывается это таким образом: M(x;y), где x – абсцисса, а y – ордината. Читается как: «Точка M с координатами x, y».


Как определить координаты точки на плоскости?

Теперь мы знаем, что у каждой точки на плоскости есть две координаты. Для того чтобы узнать ее координаты нам достаточно через эту точку провести две прямые, перпендикулярные осям координат. Точки пересечения этих прямых с координатными осями и будут искомыми координатами. Так, например, на рис. 3 мы определили, что координатами точки M являются 5 и 3.


Как построить точку на плоскости по ее координатам?

Бывает и так, что мы уже знаем координаты точки на плоскости. И нам нужно найти ее расположение. Допустим у нас координаты точки (-2;5). То есть, абцисса равна -2, а ордината равна 5. Возьмем на прямой x (оси абсцисс) точку с координатой -2 и проведем через нее прямую a, параллельную оси y. Заметим, что любая точка на этой прямой будет иметь абсциссу равную -2. Теперь найдем на прямой y (оси ординат) точку с координатой 5 и проведем через нее прямую b, параллельную оси x. Заметим, что любая точка на этой прямой будет иметь ординату равную 5. На пересечении прямых a и b как раз и будет находиться точка с координатами (-2;5). Обозначим ее буквой P (рис. 4).

Добавим также, что прямая a, все точки которой имеют абсциссу -2, задается уравнением
x = -2 или что x = -2 – уравнение прямой a. Можно для удобства говорить не «прямая, которая задается уравнением x = -2», а просто «прямая x = -2». Действительно, для любой точки прямой a справедливо равенство x = -2. А прямая b, все точки которой имеют ординату 5, в свою очередь задается уравнением y = 5 или что y = 5 – уравнение прямой b.

Основные сведения о координатной плоскости

Каждый объект (например, дом, место в зрительном зале, точка на карте) имеет свой упорядоченный адрес (координаты), который имеет числовое или буквенное обозначение.

Математики разработали модель, которая позволяет определять положение объекта и называется координатной плоскостью .

Чтобы построить координатную плоскость нужно провести $2$ перпендикулярные прямые , на конце которых указываются с помощью стрелок направления «вправо» и «вверх». На прямые наносятся деления, а точка пересечения прямых является нулевой отметкой для обеих шкал.

Определение 1

Горизонтальная прямая называется осью абсцисс и обозначается х, а вертикальная прямая называется осью ординат и обозначается у.

Две перпендикулярные оси х и у с делениями составляют прямоугольную , или декартовую , систему координат , которую предложил французский философ и математик Рене Декарт.

Координатная плоскость

Координаты точки

Точка на координатной плоскости определяется двумя координатами.

Чтобы определить координаты точки $A$ на координатной плоскости нужно через нее провести прямые, которые будут параллельны координатным осям (на рисунке выделены пунктирной линией). Пересечение прямой с осью абсцисс дает координату $x$ точки $A$, а пересечение с осью ординат дает координату у точки $A$. При записи координат точки сначала записывается координата $x$, а затем координата $y$.

Точка $A$ на рисунке имеет координаты $(3; 2)$, а точка $B (–1; 4)$.

Для нанесения точки на координатную плоскость действуют в обратном порядке.

Построение точки по заданным координатам

Пример 1

На координатной плоскости построить точки $A(2;5)$ и $B(3; –1).$

Решение .

Построение точки $A$:

  • отложим число $2$ на оси $x$ и проведем перпендикулярную прямую;
  • на оси у отложим число $5$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $A$ с координатами $(2; 5)$.

Построение точки $B$:

  • отложим на оси $x$ число $3$ и проведем перпендикулярную оси х прямую;
  • на оси $y$ отложим число $(–1)$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $B$ с координатами $(3; –1)$.

Пример 2

Построить на координатной плоскости точки с заданными координатами $C (3; 0)$ и $D(0; 2)$.

Решение .

Построение точки $C$:

  • отложим число $3$ на оси $x$;
  • координата $y$ равна нулю, значит точка $C$ будет лежать на оси $x$.

Построение точки $D$:

  • отложим число $2$ на оси $y$;
  • координата $x$ равна нулю, значит, точка $D$ будет лежать на оси $y$.

Замечание 1

Следовательно, при координате $x=0$ точка будет лежать на оси $y$, а при координате $y=0$ точка будет лежать на оси $x$.

Пример 3

Определить координаты точек A, B, C, D.$

Решение .

Определим координаты точки $A$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Таким образом, получаем, что точка $A (1; 3).$

Определим координаты точки $B$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Получаем, что точка $B (–2; 4).$

Определим координаты точки $C$. Т.к. она расположена на оси $y$, то координата $x$ этой точки равна нулю. Координата у равна $–2$. Таким образом, точка $C (0; –2)$.

Определим координаты точки $D$. Т.к. она находится на оси $x$, то координата $y$ равна нулю. Координата $x$ этой точки равна $–5$. Таким образом, точка $D (5; 0).$

Пример 4

Построить точки $E(–3; –2), F(5; 0), G(3; 4), H(0; –4), O(0; 0).$

Решение .

Построение точки $E$:

  • отложим число $(–3)$ на оси $x$ и проведем перпендикулярную прямую;
  • на оси $y$ отложим число $(–2)$ и проведем перпендикулярную прямую к оси $y$;
  • на пересечении перпендикулярных прямых получаем точку $E (–3; –2).$

Построение точки $F$:

  • координата $y=0$, значит, точка лежит на оси $x$;
  • отложим на оси $x$ число $5$ и получим точку $F(5; 0).$

Построение точки $G$:

  • отложим число $3$ на оси $x$ и проведем перпендикулярную прямую к оси $x$;
  • на оси $y$ отложим число $4$ и проведем перпендикулярную прямую к оси $y$;
  • на пересечении перпендикулярных прямых получаем точку $G(3; 4).$

Построение точки $H$:

  • координата $x=0$, значит, точка лежит на оси $y$;
  • отложим на оси $y$ число $(–4)$ и получим точку $H(0; –4).$

Построение точки $O$:

  • обе координаты точки равны нулю, значит, точка лежит одновременно и на оси $y$, и на оси $x$, следовательно является точкой пересечения обеих осей (началом координат).

Инструкция

Постройте три координатные плоскости, чтобы иметь начало отсчета в точке О. На чертеже плоскости проекций в виде трех осей – ох, оу и оz, причем ось оz направлена вверх, ось оу – вправо. Чтобы построить последнюю ось ох, разделите угол между осями оу и оz напополам (если вы рисуете на листе в клетку, просто проведите эту ось ).

Обратите внимание, если координаты точки А записаны в виде трех в скобках (а, b, с), то первое число а – от плоскости х, второе b – от у, третье c – от z. Сначала возьмите первую координату а и отметьте ее на оси ох, влево и вниз, если число а положительное, вправо и вверх, если оно отрицательное. Полученную букву назовите В.

Затем отложите последнее число с вверх по оси оz, если оно положительное, и вниз по этой же оси, если отрицательное. Отметьте полученную точку буквой D.

Из полученных точек проведите проекций искомой точки на плоскостях. То есть в точке В проведите две прямые, которые будут параллельны осям оу и oz, в точке С проведите прямые, параллельные осям ох и oz, в точке D – прямые, параллельные ох и оу.

Если одна из координат точки равна нулю, точка лежит в одной из плоскостей проекций. В таком случае просто отметьте известные координаты на плоскости и найдите точку пересечения их проекций. Будьте внимательны при построении точек с координатами (а, 0, с) и (а, b, 0), не забывайте, что проекция на ось ох осуществляется под углом в 45⁰.

Видео по теме

Источники:

  • по координатам построить

Совет 2: Как проверить, что точки не лежат на одной прямой

На основании аксиомы, описывающей свойства прямой : какова бы ни была прямая, есть точки , принадлежащие и не принадлежащие ей. Поэтому вполне логично, что не все точки будут лежать на одной прямой линии.

Вам понадобится

  • - карандаш;
  • - линейка;
  • - ручка;
  • - тетрадь;
  • - калькулятор.

Инструкция

В том случае, если (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) будет меньше нуля, точка К располагается выше или левее линии. Другими словами, только в том случае, если уравнение вида (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) = 0 справедливо, точки А, В и К будут расположены на одной прямой .

В остальных случаях лишь две точки (А и В), которые, по условию задания, лежат на прямой , будут ей принадлежать: через третью точку (точку К) прямая проходить не будет.

Рассмотрите второй вариант принадлежности точки примой: на этот раз нужно проверить принадлежит ли точка С(x,y) отрезку с концевыми точками В(x1,y1) и А(x2,y2), который является частью прямой z.

Точки рассматриваемого отрезка опишите уравнением pOB+(1-p)OА=z, при условии, что 0≤p≤1. ОВ и ОА являются векторами. Если есть число p, которое больше или равно 0, но меньше или равно 1, то pOB+(1-p)OА=С, а , точка С будет лежать на отрезке АВ. В противном случае, данная точка не будет принадлежать этому отрезку.

Распишите равенство pOB+(1-p)OА=С покоординатно: px1+(1-p)x2=x и py1+(1-p)y2=y.

Найдите из первого число р и подставьте его значение во второе равенство. Если равенство будет соответствовать условиям 0≤p≤1, то точка С принадлежит отрезку АВ.

Обратите внимание

Убедитесь в правильности расчетов!

Полезный совет

Чтобы найти k - угловой коэффициент прямой, нужно (y2 - y1)/(x2 - x1).

Источники:

  • Алгоритм проверки принадлежности точки многоугольнику. Метод трассировки луча в 2019

Трехмерное пространство состоит из трех основных понятий, которые вы постепенно изучаете в школьной программе: точка, прямая, плоскость. В ходе работы с некоторыми математическими величинами вам может понадобиться объединить эти элементы, например, построить плоскость в пространстве по точке и прямой.

Инструкция

Чтобы понять алгоритм построения плоскостей в пространстве, обратите внимание на некоторые аксиомы, которые описывают свойства плоскости или плоскостей. Первое: через три точки, не лежащие на одной прямой, проходит плоскость, при этом только одна. Стало быть, для построения плоскости вам достаточно трех точек, удовлетворяющих по положению аксиоме.

Второе: через любые две точки проходит прямая, при этом только одна. Соответственно, построить плоскость можно через прямую и точку, не лежащую на ней. Если от обратного: любая прямая содержит, как минимум, две точки, через которые она проходит, если известна еще одна точка, не на этой прямой, через эти три точки можно построить прямую, как в пункте первом. Каждая точка этой прямой будет принадлежать плоскости.

Третье: через две пересекающиеся прямые проходит плоскость, при этом только одна. Пересекающиеся прямые могут образовать только одну общую точку. Если в пространстве, они будут иметь бесконечное количество общих точек, и, следовательно, составлять одну прямую. Когда вам известны две прямые, имеющие точку пересечения, вы можете построить не более одной плоскости, проходящей через эти прямые.

Четвертое: через две параллельные прямые можно провести плоскость, при этом только одну. Соответственно, если вам известно, что прямые параллельны, вы можете провести через них плоскость.

Пятое: через прямую можно провести бесконечное количество плоскостей. Все эти плоскости могут быть рассмотрены как вращение одной плоскости вокруг заданной прямой, или как бесконечное множество плоскостей, имеющих одну линию пересечения.

Итак, построить плоскость вы можете, если найдены все элементы, которые определяют ее положение в пространстве: три точки, не лежащие на прямой, прямая и точка, не принадлежащая прямой, две пересекающиеся или две параллельные прямые.

Видео по теме

Знаете ли вы, что организм человека - это мини-электростанция? Каждый из нас вырабатывает небольшое количество электроэнергии. Это происходит как в движении, так и в покое - тогда выработка электричества происходит во внутренних органах, одним из которых является сердце.

Одним из медицинских исследований, позволяющих определить состояние сердца, является ЭКГ. Кардиолог снимает электрокардиограмму, чтобы узнать, расположено в грудной клетке, как работают предсердия, клапаны и желудочки, их форма и нет ли функциональных изменений. Один из важнейших показателей ЭКГ - направленность электрической оси сердца.

Что такое ось сердца и как ее найти?

Сердечную ось (как и ось земную) невозможно увидеть или потрогать. Она определяется только с помощью электрокардиографа, ведь он фиксирует электрическую активность сердца. Когда клетки сердечной мышцы напрягаются и расслабляются, повинуясь импульсам, идущим от нервной системы, они образуют электрическое поле, центром которого и является ЭОС (электрическая ось сердца).

Но если заглянуть в анатомический атлас, можно провести вертикальную линию, которая поделит сердце на две равные части - примерно так и располагается ось сердца. Отсюда можно сделать вывод, что ЭОС совпадает с так называемой анатомической осью. Конечно, каждый человек индивидуален, поэтому и электрическая ось у разных людей может располагаться по-иному (к примеру, если отталкиваться от серднестатистического значения, то у худого человека ЭОС расположена вертикально, а у тучного - горизонтально).

Когда сердечная ось меняет положение?

Сняв ЭКГ и узнав, как располагается ЭОС, кардиолог может сказать вам, как в грудной клетке , здоров ли миокард (сердечная ), как нервные импульсы проходят к разным отделам сердца.

Если электрокардиограмма показывает, что электрическая ось вправо или влево, это укажет врачу на какой-либо патологический процесс. Отклонение вправо может навести на подозрения о неправильном положении сердца (его смещение может быть врожденным или возникать вследствие расширения аорты, возникновения новообразований и прочих патологий). Кроме того, отклонение ЭОС - признак опасных для жизни состояний: декстрокардии, блокады пучка Гиса, инфаркта миокарда (его передней стенки).

Если же ЭОС значительно отклонена в левую сторону, это может быть признаком кардиомиопатии, гипертрофии некоторых отделов сердца, верхушечного инфаркта или врожденного порока.

Ряд заболеваний сердца может до поры протекать бессимптомно. Поэтому так важно периодически проходить медосмотр, одной из составляющих которого является ЭКГ. Ведь болезнь легче предупредить, . А болезни сердца нужно в обязательном порядке, ведь они - прямая угроза жизни.

Если построить на плоскости две взаимно перпендикулярные числовые оси : OX и OY , то они будут называться осями координат . Горизонтальная ось OX называется осью абсцисс (осью x ), вертикальная ось OY - осью ординат (осью y ).

Точка O , стоящая на пересечении осей, называется началом координат . Она является нулевой точкой для обеих осей. Положительные числа изображаются на оси абсцисс точками вправо, а на оси ординат - точками вверх от нулевой точки. Отрицательные числа изображаются точками влево и вниз от начала координат (точки O ). Плоскость, на которой лежат оси координат, называется координатной плоскостью .

Оси координат делят плоскость на четыре части, называемые четвертями или квадрантами . Принято эти четверти нумеровать римскими цифрами в том порядке, в котором они пронумерованы на чертеже.

Координаты точки на плоскости

Если взять на координатной плоскости произвольную точку A и провести от неё перпендикуляры к осям координат, то основания перпендикуляров лягут на два числа. Число, на которое указывает вертикальный перпендикуляр, называется абсциссой точки A . Число, на которое указывает горизонтальный перпендикуляр, - ординатой точки A .

На чертеже абсцисса точки A равна 3, а ордината 5.

Абсцисса и ордината называются координатами данной точки на плоскости.

Координаты точки записываются в скобках справа от обозначения точки. Первой записывается абсцисса, а за ней ордината. Так запись A (3; 5) обозначает, что абсцисса точки A равна трём, а ордината - пяти.

Координаты точки - это числа, определяющие её положение на плоскости.

Если точка лежит на оси абсцисс, то её ордината равна нулю (например, точка B с координатами -2 и 0). Если точка лежит на оси ординат, то её абсцисса равна нулю (например, точка C с координатами 0 и -4).

Начало координат - точка O - имеет и абсциссу и ординату равные нулю: O (0; 0).

Данная система координат называется прямоугольной или декартовой .

Похожие статьи