Как округляются числа после запятой. Как округлять числа в большую и меньшую сторону функциями Excel

Сегодня мы рассмотрим довольно скучную тему, без понимания которой двигаться дальше не представляется возможным. Эта тема называется «округление чисел» или по-другому «приближённые значения чисел».

Содержание урока

Приближённые значения

Приближённые (или приблизительные) значения применяются тогда, когда точное значение чего-либо найти невозможно, или же это значение не важно для исследуемого предмета.

Например, на словах можно сказать, что в городе проживает полмиллиона человек, но это высказывание не будет истинным, поскольку количество человек в городе меняется — люди приезжают и уезжают, рождаются и умирают. Поэтому правильнее будет сказать, что в городе проживает приблизительно полмиллиона человек.

Ещё пример. В девять утра начинаются занятия. Мы вышли из дома в 8:30. Через некоторое время по дороге мы встретили своего товарища, который спросил у нас сколько сейчас времени. Когда мы выходили из дома было 8:30, на дорогу мы потратили какое-то неизвестное время. Мы не знаем сколько сейчас времени, поэтому отвечаем товарищу: «сейчас приблизительно около девяти часов».

В математике приближенные значения указываются с помощью специального знака. Выглядит он следующим образом:

Читается как «приблизительно равно».

Чтобы указать приблизительное значение чего-либо, прибегают к такой операции, как округление чисел.

Округление чисел

Для нахождения приближенного значения применяется такая операция, как округление чисел .

Слово «округление» говорит само за себя. Округлить число значит сделать его круглым. Круглым называется число, которое оканчивается нулем. Например, следующие числа являются круглыми,

10, 20, 30, 100, 300, 700, 1000

Любое число можно сделать круглым. Процедуру, при которой число делают круглым, называют округлением числа .

Мы уже занимались «округлением» чисел, когда делили большие числа. Напомним, что для этого мы оставляли без изменения цифру, образующую старший разряд, а остальные цифры заменяли нулями. Но это были лишь наброски, которые мы делали для облегчения деления. Своего рода лайфхак . По факту, это даже не являлось округлением чисел. Именно поэтому в начале данного абзаца мы взяли слово округление в кавычки.

На самом деле, суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.

Рассмотрим простой пример на округление. Дано число 17. Требуется округлить его до разряда десятков.

Не забегая вперёд попробуем понять, что означает «округлить до разряда десятков». Когда говорят округлить число 17, от нас требуют найти ближайшее круглое число для числа 17. При этом, в ходе этого поиска возможно изменения коснутся и цифры, которая находится в разряде десятков в числе 17 (т.е единицы).

Представим, что все числа от 10 до 20 лежат на прямой линии:

На рисунке видно, что для числа 17 ближайшее круглое число это 20. Значит ответ к задаче таким и будет: 17 приблизительно равно 20

17 ≈ 20

Мы нашли приближённое значение для 17, то есть округлили его до разряда десятков. Видно, что после округления в разряде десятков появилась новая цифра 2.

Попробуем найти приближённое число для числа 12. Для этого снова представим, что все числа от 10 до 20 лежат на прямой линии:

На рисунке видно, что ближайшее круглое число для 12 это число 10. Значит ответ к задаче таким и будет: 12 приблизительно равно 10

12 ≈ 10

Мы нашли приближённое значение для 12, то есть округлили его до разряда десятков. В этот раз цифра 1, которая стояла в разряде десятков в числе 12, не пострадала от округления. Почему так случилось мы рассмотрим позже.

Попробуем найти ближайшее число для числа 15. Снова представим, что все числа от 10 до 20 лежат на прямой линии:

На рисунке видно, что число 15 одинаково удалено от круглых чисел 10 и 20. Возникает вопрос: которое из этих круглых чисел будет приближённым значением для числа 15? Для таких случаев условились принимать большее число за приближённое. 20 больше чем 10, поэтому приближённое значение для 15 будет число 20

15 ≈ 20

Округлять можно и большие числа. Естественно, для них рисовать прямую линию и изображать числа не представляется возможным. Для них существует свой способ. Например, округлим число 1456 до разряда десятков.

Мы должны округлить 1456 до разряда десятков. Разряд десятков начинается на пятёрке:

Теперь о существовании первых цифр 1 и 4 временно забываем. Остается число 56

Теперь смотрим, какое круглое число находится ближе к числу 56. Очевидно, что ближайшее круглое число для 56 это число 60. Значит заменяем число 56 на число 60

Значит при округлении числа 1456 до разряда десятков получим 1460

1456 ≈ 1460

Видно, что после округления числа 1456 до разряда десятков, изменения коснулись и самого разряда десятков. В новом полученном числе в разряде десятков теперь располагается цифра 6, а не 5.

Округлять числа можно не только до разряда десятков. Округлять можно также до разряда сотен, тысяч, десятков тысяч.

После того, как становится понятно, что округление это ни что иное, как поиск ближайшего числа, можно применять готовые правила, которые значительно облегчают округление чисел.

Первое правило округления

Из предыдущих примеров стало ясно, что округляя число до определенного разряда, младшие разряды заменяются нулями. Цифры, которые заменяются нулями, называют отбрасываемыми цифрами .

Первое правило округления выглядит следующим образом:

Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Например, округлим число 123 до разряда десятков.

В первую очередь находим сохраняемую цифру. Для этого надо прочитать само задание. В разряде, о котором говорится в задании и находится сохраняемая цифра. В задании сказано: округлить число 123 до разряда десятков.

Видим, что в разряде десятков находится двойка. Значит сохраняемой цифрой является цифра 2

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после двойки это цифра 3. Значит цифра 3 является первой отбрасываемой цифрой .

Теперь применяем правило округления. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Так и делаем. Оставляем без изменения сохраняемую цифру, а все младшие разряды заменяем нулями. Другими словами, всё что следует после цифры 2 заменяем нулями (точнее нулём):

123 ≈ 120

Значит при округлении числа 123 до разряда десятков, получаем приближённое ему число 120.

Теперь попробуем округлить то же самое число 123, но уже до разряда сотен .

Нам требуется округлить число 123 до разряда сотен. Снова ищем сохраняемую цифру. В этот раз сохраняемой цифрой является 1, поскольку мы округляем число до разряда сотен.

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после единицы это цифра 2. Значит цифра 2 является первой отбрасываемой цифрой:

Теперь применим правило. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Так и делаем. Оставляем без изменения сохраняемую цифру, а все младшие разряды заменяем нулями. Другими словами, всё что следует после цифры 1 заменяем нулями:

123 ≈ 100

Значит при округлении числа 123 до разряда сотен, получаем приближённое ему число 100.

Пример 3. Округлить число 1234 до разряда десятков.

Здесь сохраняемая цифра это 3. А первая отбрасываемая цифра это 4.

Значит оставляем сохраняемую цифру 3 без изменений, а всё что располагается после неё заменяем нулём:

1234 ≈ 1230

Пример 4. Округлить число 1234 до разряда сотен.

Здесь сохраняемая цифра это 2. А первая отбрасываемая цифра это 3. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит оставляем сохраняемую цифру 2 без изменений, а всё что располагается после неё заменяем нулями:

1234 ≈ 1200

Пример 3. Округлить число 1234 до разряда тысяч.

Здесь сохраняемая цифра это 1. А первая отбрасываемая цифра это 2. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит оставляем сохраняемую цифру 1 без изменений, а всё что располагается после неё заменяем нулями:

1234 ≈ 1000

Второе правило округления

Второе правило округления выглядит следующим образом:

Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Например, округлим число 675 до разряда десятков.

В первую очередь находим сохраняемую цифру. Для этого надо прочитать само задание. В разряде, о котором говорится в задании и находится сохраняемая цифра. В задании сказано: округлить число 675 до разряда десятков.

Видим, что в разряде десятков находится семёрка. Значит сохраняемой цифрой является цифра 7

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после семёрки это цифра 5. Значит цифра 5 является первой отбрасываемой цифрой .

У нас первая из отбрасываемых цифр это 5. Значит мы должны увеличить на единицу сохраняемую цифру 7, а всё что следует после неё заменить нулём:

675 ≈ 680

Значит при округлении числа 675 до разряда десятков, получаем приближённое ему число 680.

Теперь попробуем округлить то же самое число 675, но уже до разряда сотен .

Нам требуется округлить число 675 до разряда сотен. Снова ищем сохраняемую цифру. В этот раз сохраняемой цифрой является 6, поскольку мы округляем число до разряда сотен:

Теперь находим первую из отбрасываемых цифр. Первой из отбрасываемых цифр является та цифра, которая следует после сохраняемой цифрой. Видим, что первая цифра после шестёрки это цифра 7. Значит цифра 7 является первой отбрасываемой цифрой:

Теперь применяем второе правило округления. Оно говорит, что если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

У нас первая из отбрасываемых цифр это 7. Значит мы должны увеличить на единицу сохраняемую цифру 6, а всё что следует после неё заменить нулями:

675 ≈ 700

Значит при округлении числа 675 до разряда сотен, получаем приближённое ему число 700.

Пример 3. Округлить число 9876 до разряда десятков.

Здесь сохраняемая цифра это 7. А первая отбрасываемая цифра это 6.

Значит увеличиваем на единицу сохраняемую цифру 7, а всё что располагается после неё заменяем нулём:

9876 ≈ 9880

Пример 4. Округлить число 9876 до разряда сотен.

Здесь сохраняемая цифра это 8. А первая отбрасываемая цифра это 7. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит увеличиваем на единицу сохраняемую цифру 8, а всё что располагается после неё заменяем нулями:

9876 ≈ 9900

Пример 5. Округлить число 9876 до разряда тысяч.

Здесь сохраняемая цифра это 9. А первая отбрасываемая цифра это 8. Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит увеличиваем на единицу сохраняемую цифру 9, а всё что располагается после неё заменяем нулями:

9876 ≈ 10000

Пример 6. Округлить число 2971 до сотен.

При округлении этого числа до сотен следует быть внимательным, поскольку сохраняемая цифра здесь 9, а первая отбрасываемая цифра это 7. Значит цифра 9 должна увеличиться на единицу. Но дело в том, что после увеличения девятки на единицу получится 10, а это цифра не вместится в разряд сотен нового числа.

В этом случае, в разряде сотен нового числа надо записать 0, а единицу перенести на следующий разряд и сложить с цифрой, которая там находится. Далее заменить все цифры после сохраняемой нулями:

2971 ≈ 3000

Округление десятичных дробей

При округлении десятичных дробей следует быть особенно внимательным, поскольку десятичная дробь состоит из целой и дробной части. И каждая из этих двух частей имеет свои разряды:

Разряды целой части:

  • разряд единиц
  • разряд десятков
  • разряд сотен
  • разряд тысяч

Разряды дробной части:

  • разряд десятых
  • разряд сотых
  • разряд тысячных

Рассмотрим десятичную дробь 123,456 — сто двадцать три целых четыреста пятьдесят шесть тысячных. Здесь целая часть это 123, а дробная часть 456. При этом у каждой из этих частей есть свои разряды. Очень важно не путать их:

Для целой части применяются те же правила округления, что и для обычных чисел. Отличие в том, что после округления целой части и замены нулями всех цифр после сохраняемой цифры, дробная часть полностью отбрасывается.

Например, округлим дробь 123,456 до разряда десятков. Именно до разряда десятков , а не разряда десятых . Очень важно не перепутать эти разряды. Разряд десятков располагается в целой части, а разряд десятых в дробной.

Мы должны округлить 123,456 до разряда десятков. Сохраняемая цифра здесь это 2, а первая из отбрасываемых цифр это 3

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит сохраняемая цифра останется без изменений, а всё остальное заменится нулём. А что делать с дробной частью? Её просто отбрасывают (убирают):

123,456 ≈ 120

Теперь попробуем округлить ту же самую дробь 123,456 до разряда единиц . Сохраняемая цифра здесь будет 3, а первая из отбрасываемых цифр это 4, которая находится в дробной части:

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит сохраняемая цифра останется без изменений, а всё остальное заменится нулём. Оставшаяся дробная часть будет отброшена:

123,456 ≈ 123,0

Ноль, который остался после запятой тоже можно отбросить. Значит окончательный ответ будет выглядеть следующим образом:

123,456 ≈ 123,0 ≈ 123

Теперь займёмся округлением дробных частей. Для округления дробных частей справедливы те же правила, что и для округления целых частей. Попробуем округлить дробь 123,456 до разряда десятых. В разряде десятых располагается цифра 4, значит она является сохраняемой цифрой, а первая отбрасываемая цифра это 5, которая находится в разряде сотых:

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит сохраняемая цифра 4 увеличится на единицу, а остальная часть заменится нулями

123,456 ≈ 123,500

Попробуем округлить ту же самую дробь 123,456 до разряда сотых. Сохраняемая цифра здесь это 5, а первая из отбрасываемых цифр это 6, которая находится в разряде тысячных:

Согласно правилу, если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит сохраняемая цифра 5 увеличится на единицу, а остальная часть заменится нулями

123,456 ≈ 123,460

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

В некоторых случаях, точное число при делении определенной суммы на конкретное число невозможно определить в принципе. Например, при делении 10 на 3, у нас получается 3,3333333333…..3, то есть, данное число невозможно использовать для подсчета конкретных предметов и в других ситуациях. Тогда данное число следует привести к определенному разряду, например, к целому числу или к числу с десятичным разрядом. Если мы приведем 3,3333333333…..3 к целому числу, то получим 3, а приводя 3,3333333333…..3 к числу с десятичным разрядом, получим 3,3.

Правила округления

Что такое округление? Это отбрасывание нескольких цифр, которые являются последними в ряду точного числа. Так, следуя нашему примеру, мы отбросили все последние цифры, чтобы получить целое число (3) и отбросили цифры, оставив только разряды десятков (3,3). Число можно округлять до сотых и тысячных, десятитысячных и прочих чисел. Все зависит от того, насколько точное число необходимо получить. Например, при изготовлении медицинских препаратов, количество каждого из ингредиентов лекарства берется с наибольшей точностью, поскольку даже тысячная грамма может привести к летальному исходу. Если же необходимо подсчитать, какая успеваемость учеников в школе, то чаще всего используется число с десятичным или с сотым разрядом.

Рассмотрим иной пример, в котором применяются правила округления. Например, имеется число 3,583333, которое необходимо округлить до тысячных - после округления, за запятой у нас должно остаться три цифры, то есть результатом станет число 3,583. Если же это число округлять до десятых, то у нас получится не 3,5, а 3,6, поскольку после «5» стоит цифра «8», которая приравнивается уже к «10» во время округления. Таким образом, следуя правилам округления чисел, необходимо знать, если цифры больше «5», то последняя цифра, которую необходимо сохранить, будет увеличена на 1. При наличии цифры, меньшей, чем «5», последняя сохраняемая цифра остается неизменной. Такие правила округления чисел применяются независимо от того, до целого числа или до десятков, сотых и т.д. необходимо округлить число.

В большинстве случаев, при необходимости округления числа, в котором последняя цифра «5», этот процесс выполняется неправильно. Но существует еще и такое правило округления, которое касается именно таких случаев. Рассмотрим на примере. Необходимо округлить число 3,25 до десятых. Применяя правила округления чисел, получим результат 3,2. То есть, если после «пяти» нет цифры или стоит ноль, то последняя цифра остается неизменной, но только при условии, что она является четной - в нашем случае «2» - это четная цифра. Если бы нам необходимо было выполнить округление 3,35, то результатом бы стало число 3,4. Поскольку, в соответствии с правилами округления, при наличии нечетной цифры перед «5», которую необходимо убрать, нечетная цифра увеличивается на 1. Но только при условии, что после «5» нет значащих цифр. Во многих случаях, могут применяться упрощенные правила, согласно которым, при наличии за последней сохраняемой цифрой значений цифр от 0 до 4, сохраняемая цифра не изменяется. При наличии других цифр, последняя цифра увеличивается на 1.

Методы

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding ) - наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-ого знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 5 , то N-ый знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5 , то N-ый знак увеличивают на единицу, а N+1 и все последующие обнуляют;
    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3.
  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer ) - самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1).
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling ) - если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне - округление в пользу продавца , кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2.
  • Округление к меньшему (округление к −∞, округление вниз, англ. floor ) - если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне - округление в пользу покупателя , дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3.
  • Округление к большему по модулю (округление к бесконечности, округление от нуля) - относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу.

Варианты округления 0,5 к ближайшему целому

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю . Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» - в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление - округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ. banker"s rounding ) - округление для этого случая происходит к ближайшему чётному , то есть 2,5 → 2, 3,5 → 4.
  • Случайное округление - округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике).
  • Чередующееся округление - округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений может происходить накопление ошибки округления . Типичный пример: округление до целых рублей денежных сумм. Так, если в реестре из 10000 строк окажется 100 строк с суммами, содержащими в части копеек значение 50 (а это вполне реальная оценка), то при округлении всех таких строк «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина окажется слева, а половина - справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина - в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

Применения

Округление используется для того, чтобы работать с числами в пределах того количества знаков, которое соответствует реальной точности параметров вычислений (если эти значения представляют собой измеренные тем или иным образом реальные величины), реально достижимой точности вычислений либо желаемой точности результата. В прошлом округление промежуточных значений и результата имело прикладное значение (так как при расчётах на бумаге или с помощью примитивных устройств типа абака учёт лишних десятичных знаков может серьёзно увеличить объём работы). Сейчас оно остаётся элементом научной и инженерной культуры. В бухгалтерских приложениях, кроме того, использование округлений, в том числе промежуточных, может требоваться для защиты от вычислительных ошибок, связанных с конечной разрядностью вычислительных устройств.

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного действительного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя - сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс 1,4 м = 8,141 кгс м . Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7 10 −4 , второго - 1/140 ≈ 7,1 10 −3 , относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3 10 −3 , что соответствует максимальной абсолютной погрешности результата ±0,059 кгс м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс м, таким образом, в рассчитанном значении 8,141 кгс м полностью надёжной является только первая цифра, даже вторая - уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс м .

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений :

  1. Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м - здесь надёжными являются только десятки, до них и следует округлять).
  2. Промежуточные значения округляются с одной «запасной» цифрой.
  3. При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  4. При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют параметры (например, при вычислении скорости равномерного движения тела на дистанции 2,5 10 2 м, за 600 с результат должен быть округлён до 4,2 м/с, поскольку именно две цифры имеет расстояние, а время - три, предполагая, что все цифры в записи - значащие).
  5. При вычислении значения функции f(x) требуется оценить значение модуля производной этой функции в окрестности точки вычисления. Если (|f"(x)| ≤ 1) , то результат функции точен до того же десятичного разряда, что и аргумент. В противном случае результат содержит меньше точных десятичных разрядов на величину log 10 (|f"(x)|) , округлённую до целого в большую сторону.

Несмотря на нестрогость, приведённые правила достаточно хорошо работают на практике, в частности, из-за достаточно высокой вероятности взаимопогашения ошибок, которая при точном учёте погрешностей обычно не учитывается.

Ошибки

Довольно часто встречаются злоупотребления некруглыми числами. Например:

  • Записывают числа, имеющие невысокую точность, в неокруглённом виде. В статистике: если 4 человека из 17 ответили «да», то пишут «23,5 %» (в то время как верно «24 %»).
  • Пользователи стрелочных приборов иногда размышляют так: «стрелка остановилась между 5,5 и 6 ближе к 6, пусть будет 5,8» - это также запрещено (градуировка прибора как правило соответствует его реальной точности). В таком случае надо говорить «5,5» или «6».

См. также

  • Обработка наблюдений
  • Ошибки округления

Примечания

Литература

  • Генри С. Уоррен, мл. Глава 3. Округление к степени 2 // Алгоритмические трюки для программистов = Hacker"s Delight. - М .: «Вильямс», 2007. - С. 288. - ISBN 0-201-91465-4

Чтобы рассмотреть особенность округления того или иного числа, необходимо проанализировать конкретные примеры и некоторую основную информацию.

Как округлять числа до сотых

  • Для округления числа до сотых необходимо оставлять после запятой две цифры, остальные, конечно же, отбрасываются. Если первая цифра, которая отбрасывается, это 0, 1, 2, 3 или 4, то предыдущая цифра остается неизменной.
  • Если же отбрасываемая цифра – это 5, 6, 7, 8 или 9, то нужно увеличить предыдущую цифру на единицу.
  • К примеру, если нужно округлить число 75,748 , то после округления мы получаем 75,75 . Если мы имеем 19,912 , то в результате округления, а точнее, в отсутствии необходимости его использования, мы получаем 19,91 . В случае с 19,912 цифра, которая идет после сотых, не округляется, поэтому она просто отбрасывается.
  • Если речь идет о числе 18,4893 , то округление до сотых происходит следующим образом: первая цифра, которую нужно отбросить, это 3, поэтому никаких изменений не происходит. Получается 18,48 .
  • В случае с числом 0,2254 мы имеем первую цифру, которая отбрасывается при округлении до сотых. Это пятерка, которая указывает на то, что предыдущее число нужно увеличить на единицу. То есть, мы получаем 0,23 .
  • Бывают и случаи, когда округления изменяет все цифры в числе. К примеру, чтобы округлить до сотых число 64,9972 , мы видим, что число 7 округляет предыдущие. Получаем 65,00 .

Как округлять числа до целых

При округлении чисел до целых ситуация такая же. Если мы имеем, к примеру, 25,5 , то после округления мы получаем 26 . В случае с достаточным количеством цифр после запятой округление происходит таким образом: после округления 4,371251 мы получаем 4 .

Округление до десятых происходит таким же образом, как и в случае с сотыми. К примеру, если нужно округлить число 45,21618 , то мы получаем 45,2 . Если вторая цифра после десятой – это 5 или больше, то предыдущая цифра увеличивается на единицу. В качестве примера можно округлить 13,6734 , и в итоге получится 13,7 .

Важно обращать внимание на цифру, которая расположена перед той, которая отсекается. К примеру, если мы имеет число 1,450 , то после округления получаем 1,4 . Однако в случае с 4,851 целесообразно округлять до 4,9 , так как после пятерки еще идет единица.

Предположим, что вы хотите округлить число до ближайшего целого, так как десятичные значения вам не важны, или представить число в виде степени 10, чтобы упростить приблизительные вычисления. Существует несколько способов округления чисел.

Изменение количества знаков после запятой без изменения значения

На листе

Во встроенном числовом формате

Округление числа вверх

Округление числа до ближайшего значения

Округление числа до ближайшего дробного значения

Округление числа до указанного количества значимых разрядов

Значимые разряды - это разряды, которые влияют на точность числа.

В примерах этого раздела используются функции ОКРУГЛ , ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ . Они показывают способы округления положительных, отрицательных, целых и дробных чисел, но приведенные примеры охватывают лишь небольшую часть возможных ситуаций.

В приведенном ниже списке содержатся общие правила, которые необходимо учитывать при округлении чисел до указанного количества значимых разрядов. Вы можете поэкспериментировать с функциями округления и подставить собственные числа и параметры, чтобы получить число с нужным количеством значимых разрядов.

    Округляемые отрицательные числа прежде всего преобразуются в абсолютные значения (значения без знака "минус"). После округления знак "минус" применяется повторно. Хотя это может показаться нелогичным, именно так выполняется округление. Например, при использовании функции ОКРУГЛВНИЗ для округления числа -889 до двух значимых разрядов результатом является число -880. Сначала -889 преобразуется в абсолютное значение (889). Затем это значение округляется до двух значимых разрядов (880). После этого повторно применяется знак "минус", что дает в результате -880.

    При применении к положительному числу функции ОКРУГЛВНИЗ оно всегда округляется вниз, а при применении функции ОКРУГЛВВЕРХ - вверх.

    Функция ОКРУГЛ округляет дробные числа следующим образом: если дробная часть больше или равна 0,5, число округляется вверх. Если дробная часть меньше 0,5, число округляется вниз.

    Функция ОКРУГЛ округляет целые числа вверх или вниз аналогичным образом, при этом вместо делителя 0,5 используется 5.

    В общем при округлении числа без дробной части (целого числа) необходимо вычесть длину числа из нужного количества значимых разрядов. Например, чтобы округлить 2345678 вниз до 3 значимых разрядов, используется функция ОКРУГЛВНИЗ с параметром -4: = ОКРУГЛВНИЗ(2345678,-4) . При этом число округляется до значения 2340000, где часть "234" представляет собой значимые разряды.

Округление числа до заданного кратного

Иногда может потребоваться округлить значение до кратного заданному числу. Например, допустим, что компания поставляет товары в ящиках по 18 единиц. С помощью функции ОКРУГЛТ можно определить, сколько ящиков потребуется для поставки 204 единиц товара. В данном случае ответом является 12, так как число 204 при делении на 18 дает значение 11,333, которое необходимо округлить вверх. В 12-м ящике будет только 6 единиц товара.

Может также потребоваться округлить отрицательное значение до кратного отрицательному или дробное - до кратного дробному. Для этого также можно применять функцию ОКРУГЛТ .

Похожие статьи