Вертикальный ветрогенератор для дачи. Сборка самодельного ветрогенератора: варианты конструкции от пользователей FORUMHOUSE Как построить ветряной генератор

Россия в отношении ветроэнергетических ресурсов занимает двоякое положение. С одной стороны, благодаря огромной общей площади и обилию равнинных местностей ветра в целом много, и он большей частью ровный. С другой – наши ветры преимущественно низкопотенциальные, медленные, см. рис. С третьей, в мало обжитых местностях ветры буйные. Исходя из этого, задача завести на хозяйстве ветрогенератор вполне актуальна. Но, чтобы решить – покупать достаточно дорогое устройство, или сделать его своими руками, нужно как следует подумать, какой тип (а их очень много) для какой цели выбрать.

Основные понятия

  1. КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  2. КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  3. Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  4. Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  5. Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  6. Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  7. Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  8. Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  9. Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  10. Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  11. Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  12. Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Примечания:

  1. Тихоходные ВСУ, как правило, имеют КИЭВ ниже, чем быстроходные, но имеют стартовый момент, достаточный для раскрутки генератора без отключения нагрузки и нулевую ССВ, т.е. абсолютно самозапускающиеся и применимы при самых слабых ветрах.
  2. Тихоходность и быстроходность – понятия относительные. Бытовой ветряк на 300 об/мин может быть тихоходным, а мощные ВСУ типа EuroWind, из которых набирают поля ветроэлектростанций, ВЭС (см. рис.) и роторы которых делают порядка 10 об/мин – быстроходные, т.к. при таком их диаметре линейная скорость лопастей и их аэродинамика на большей части размаха – вполне «самолетные», см. далее.

Какой нужен генератор?

Электрический генератор для ветряка бытового назначения должен вырабатывать электроэнергию в широком диапазоне скоростей вращения и обладать способностью самозапуска без автоматики и внешних источников питания. В случае использования ВСУ с ОСС (ветряки с раскруткой), обладающих, как правило, высокими КИЭВ и КПД, он должен быть и обратимым, т.е. уметь работать и как двигатель. При мощностях до 5 кВт этому условию удовлетворяют электрические машины с постоянными магнитами на основе ниобия (супермагнитами); на стальных или ферритовых магнитах можно рассчитывать не более чем на 0,5-0,7 кВт.

Примечание: асинхронные генераторы переменного тока или коллекторные с ненамагниченным статором не годятся совершенно. При уменьшении силы ветра они «погаснут» задолго до того, как его скорость упадет до МРС, и потом сами не запустятся.

Отличное «сердце» ВСУ мощностью от 0,3 до 1-2 кВт получается из автогенератора переменного тока со встроенным выпрямителем; таких сейчас большинство. Во-первых, они держат выходное напряжение 11,6-14,7 В в довольно широком диапазоне скоростей без внешних электронных стабилизаторов. Во-вторых, кремниевые вентили открываются, когда напряжение на обмотке достигнет примерно 1,4 В, а до этого генератор «не видит» нагрузки. Для этого генератор нужно уже довольно прилично раскрутить.

В большинстве случаев автогенератор можно непосредственно, без зубчатой или ременной передачи, соединить с валом быстроходного ВД, подобрав обороты выбором количества лопастей, см. ниже. «Быстроходки» имеют малый или нулевой стартовый момент, но ротор и без отключения нагрузки успеет достаточно раскрутиться, прежде чем вентили откроются и генератор даст ток.

Выбор по ветру

Прежде чем решать, какой сделать ветрогенератор, определимся с местной аэрологией. В серо-зеленоватых (безветренных) областях ветровой карты хоть какой-то толк будет лишь от парусного ветродвигателя (и них далее поговорим). Если необходимо постоянное энергоснабжение, то придется добавить бустер (выпрямитель со стабилизатором напряжения), зарядное устройство, мощную аккумуляторную батарею, инвертор 12/24/36/48 В постоянки в 220/380 В 50 Гц переменного тока. Обойдется такое хозяйство никак не менее $20.000, и снять долговременную мощность более 3-4 кВт вряд ли получится. В общем, при непреклонном стремлении к альтернативной энергетике лучше поискать другой ее источник.

В желто-зеленых , слабоветренных местах, при потребности в электричестве до 2-3 кВт самому можно взяться за тихоходный вертикальный ветрогенератор . Их разработано несть числа, и есть конструкции, по КИЭВ и КПД почти не уступающие «лопастникам» промышленного изготовления.

Если же ВЭУ для дома предполагается купить, то лучше ориентироваться на ветряк с парусным ротором. Споров и них много, и в теории пока еще не все ясно, но работают. В РФ «парусники» выпускают в Таганроге на мощность 1-100 кВт.

В красных , ветреных, регионах выбор зависит от потребной мощности. В диапазоне 0,5-1,5 кВт оправданы самодельные «вертикалки»; 1,5-5 кВт – покупные «парусники». «Вертикалка» тоже может быть покупной, но обойдется дороже ВСУ горизонтальной схемы. И, наконец, если требуется ветряк мощностью 5 кВт и более, то выбирать нужно между горизонтальными покупными «лопастниками» или «парусниками».

Примечание: многие производители, особенно второго эшелона, предлагают комплекты деталей, из которых можно собрать ветрогенератор мощностью до 10 кВт самостоятельно. Обойдется такой набор на 20-50% дешевле готового с установкой. Но прежде покупки нужно внимательно изучить аэрологию предполагаемого места установки, а затем по спецификациям подобрать подходящие тип и модель.

О безопасности

Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.

Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.

Примечание: в конце 80-х в США был скандал – пришлось закрыть крупнейшую на тот момент в стране ВЭС. Индейцы из резервации в 200 км от поля ее ВСУ доказали в суде, что резко участившиеся у них после ввода ВЭС в эксплуатацию расстройства здоровья обусловлены ее инфразвуками.

В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.

Примечание: высотой ВСУ считается наивысшая точка ометаемого диска (для лопастных роторов) или геомерической фигуры (для вертикальных ВСУ с ротором на древке). Если мачта ВСУ или ось ротора выступают вверх еще выше, высота считается по их топу – верхушке.

Ветер, аэродинамика, КИЭВ

Самодельный ветрогенератор подчиняется тем же законам природы, что и заводской, рассчитанный на компьютере. И самодельщику основы его работы нужно понимать очень хорошо – в его распоряжении чаще всего нет дорогих суперсовременных материалов и технологического оборудования. Аэродинамика же ВСУ ох как непроста…

Ветер и КИЭВ

Для расчета серийных заводских ВСУ используется т. наз. плоская механистическая модель ветра. В ее основе следующие предположения:

  • Скорость и направление ветра постоянны в пределах эффективной поверхности ротора.
  • Воздух – сплошная среда.
  • Эффективная поверхность ротора равна ометаемой площади.
  • Энергия воздушного потока – чисто кинетическая.

При таких условиях максимальную энергию единицы объема воздуха вычисляют по школьной формуле, полагая плотность воздуха при нормальных условиях 1,29 кг*куб. м. При скорости ветра 10 м/с один куб воздуха несет в себе 65 Дж, и с одного квадрата эффективной поверхности ротора можно, при 100% КПД всей ВСУ, снять 650 Вт. Это весьма упрощенный подход – все знают, что ветер идеально ровным не бывает. Но на это приходится идти, чтобы обеспечить повторяемость изделий – обычное в технике дело.

Плоскую модель игнорировать не следует, она дает четкий минимум доступной энергии ветра. Но воздух, во-первых, сжимаем, во-вторых, очень текуч (динамическая вязкость всего 17,2 мкПа*с). Это значит, поток может обтекать ометаемую площадь, уменьшая эффективную поверхность и КИЭВ, что чаще всего и наблюдается. Но в принципе возможна и обратная ситуация: ветер стекается к ротору и площадь эффективной поверхности тогда окажется больше ометаемой, а КИЭВ – больше 1 относительно его же для плоского ветра.

Приведем два примера. Первый – прогулочная, довольно тяжеловесная, яхта может идти не только против ветра, но и быстрее его. Ветер имеется в виду внешний; вымпельный ветер все равно должен быть быстрее, иначе как он судно потянет?

Второй – классика авиационной истории. На испытаниях МИГ-19 оказалось, что перехватчик, который был на тонну тяжелее фронтового истребителя, по скорости разгоняется быстрее. С теми же движками в том же планере.

Теоретики не знали, что и думать, и всерьез засомневались в законе сохранения энергии. В конце концов оказалось – дело в выступающем из воздухозаборника конусе обтекателя РЛС. От его носка к обечайке возникало уплотнение воздуха, как бы сгребавшее его со сторон к компрессорам двигателей. С тех пор ударные волны прочно вошли в теорию как полезные, и фантастические летные данные современных самолетов в немалой степени обусловлены их умелым использованием.

Аэродинамика

Развитие аэродинамики принято делить на две эпохи – до Н. Г. Жуковского и после. Его доклад «О присоединенных вихрях» от 15 ноября 1905 г. стал началом новой эры в авиации.

До Жуковского летали на поставленных плашмя парусах: полагалось, что частицы набегающего потока отдают весь свой импульс передней кромке крыла. Это позволяло сразу избавиться от векторной величины – момента количества движения – порождавшей зубодробительную и чаще всего неаналитическую математику, перейти к куда более удобным скалярным чисто энергетическим соотношениям, и получить в итоге расчетное поле давления на несущую плоскость, более-менее похожее на настоящее.

Такой механистический подход позволил создать аппараты, способные худо-бедно подняться в воздух и совершить перелет из одного места в другое, не обязательно грохнувшись на землю где-то по пути. Но стремление увеличить скорость, грузоподъемность и другие летные качества все больше выявляло несовершенство первоначальной аэродинамической теории.

Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.

Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.

Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.

Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…

Снова КИЭВ

Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.

Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.

Современность

Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.

Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.

Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).

Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?

Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.

И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?

Чего ожидать от классики?

Однако от классики отказываться ни в коем случае не следует. Она дает основу, не оперевшись на которую нельзя подняться выше. Точно так же, как теория множеств не отменяет таблицу умножения, а от квантовой хромодинамики яблоки с деревьев вверх не улетят.

Итак, на что можно рассчитывать при классическом подходе? Посмотрим на рисунок. Слева – типы роторов; они изображены условно. 1 – вертикальный карусельный, 2 – вертикальный ортогональный (ветряная турбина); 2-5 – лопастные роторы с разным количеством лопастей с оптимизированными профилями.

Справа по горизонтальной оси отложена относительная скорость ротора, т.е., отношение линейной скорости лопасти к скорости ветра. По вертикальной вверх – КИЭВ. А вниз – опять же относительный крутящий момент. Единичным (100%) крутящим моментом считается такой, который создает насильно заторможенный в потоке ротор со 100% КИЭВ, т.е. когда вся энергия потока преобразуется во вращающее усилие.

Такой подход позволяет делать далеко идущие выводы. Скажем, количество лопастей нужно выбирать не только и не столько по желательной скорости вращения: 3- и 4-лопастники сразу много теряют по КИЭВ и вращательному моменту по сравнению с хорошо работающими примерно в том же диапазоне скорстей 2- и 6-лопастниками. А внешне похожие карусель и ортогонал обладают принципиально разными свойствами.

В целом же предпочтение следует отдавать лопастным роторам, кроме случаев, когда требуются предельная дешевизна, простота, необслуживаемый самозапуск без автоматики и невозможен подъем на мачту.

Примечание: о парусных роторах поговорим особо – они, похоже, в классику не укладываются.

Вертикалки

ВСУ с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок. Основные их типы представлены на рис.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50% В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

В 60-х в СССР Е. С. Бирюков запатентовал карусельную ВСУ с КИЭВ 46%. Немного позже В. Блинов добился от конструкции на том же принципе КИЭВ 58%, но данных о ее испытаниях нет. А натурные испытания ВСУ Бирюкова были проведены сотрудниками журнала «Изобретатель и рационализатор». Двухэтажный ротор диаметром 0,75 м и высотой 2 м при свежем ветре раскручивал на полную мощность асинхронный генератор 1,2 кВт и выдерживал без поломки 30 м/с. Чертежи ВСУ Бирюкова приведены на рис.

  1. ротор из кровельной оцинковки;
  2. самоустанавливающийся двухрядный шариковый подшипник;
  3. ванты – 5 мм стальной трос;
  4. ось-древко – стальная труба с толщиной стенок 1,5-2,5 мм;
  5. рычаги аэродинамического регулятора оборотов;
  6. лопасти регулятора оборотов – 3-4 мм фанера или листовой пластик;
  7. тяги регулятора оборотов;
  8. груз регулятора оборотов, его вес определяет частоту вращения;
  9. ведущий шкив – велосипедное колесо без шины с камерой;
  10. подпятник – упорно-опорный подшипник;
  11. ведомый шкив – штатный шкив генератора;
  12. генератор.

Бирюков на свою ВСУ получил сразу несколько авторских свидетельств. Во-первых, обратите внимание на разрез ротора. При разгоне он работает подобно ВС, создавая большой стартовый момент. По мере раскрутки во внешних карманах лопастей создается вихревая подушка. С точки зрения ветра, лопасти становятся профилированными, и ротор превращается в быстроходный ортогонал, причем виртуальный профиль меняется соответственно силе ветра.

Во-вторых, профилированный канал между лопастями в рабочем диапазоне скоростей работает как центральное тело. Если же ветер усиливается, то в нем также создается вихревая подушка, выходящая за пределы ротора. Возникает такой же вихревой кокон, как вокруг ВСУ с направляющим аппаратом. Энергия на его создание берется от ветра, и тому на поломку ветряка ее уже не хватает.

В-третьих, регулятор оборотов предназначен прежде всего для турбины. Он держит ее обороты оптимальными с точки зрения КИЭВ. А оптимум частоты вращения генератора обеспечивается выбором передаточного отношения механики.

Примечание: после публикаций в ИР за 1965 г. ВСУ Бирюкова канула в небытие. Ответа от инстанций автор так и не дождался. Судьба многих советских изобретений. Говорят, какой-то японец стал миллиардером, регулярно читая советские популярно-технические журналы и патентуя у себя все, заслуживающее внимания.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

По схемам на рис. рассмотрим подробнее; позиции:

  • Фиг. А:
  1. лопасти ротора;
  2. генератор;
  3. станина генератора;
  4. защитный флюгер (ураганная лопата);
  5. токосъемник;
  6. шасси;
  7. поворотный узел;
  8. рабочий флюгер;
  9. мачта;
  10. хомут под ванты.
  • Фиг. Б, вид сверху:
  1. защитный флюгер;
  2. рабочий флюгер;
  3. регулятор натяжения пружины защитного флюгера.
  • Фиг. Г, токосъемник:
  1. коллектор с медными неразрезными кольцевыми шинами;
  2. подпружиненные меднографитовые щетки.

Примечание: ураганная защита для горизонтального лопастника диаметром более 1 м совершенно необходима, т.к. создать вокруг себя вихревой кокон он не способен. При меньших размерах можно добиться выносливости ротора до 30 м/с с лопастями из пропилена.

Итак, где нас ждут «спотыки»?

Лопасти

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

Генератор

При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Примечание: на разработку опорного подшипника для ВСУ типа EuroWind ушло около 30 лет.

Аварийный флюгер

Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли. Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз.

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник

Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Мини и микро

Но с уменьшением размеров лопастника трудности падают по квадрату диаметра колеса. Изготовление горизонтальной лопастной ВСУ своими силами на мощность до 100 Вт уже возможно. Оптимальным будет 6-лопастный. При большем количестве лопастей диаметр ротора, рассчитанного на ту же мощность, будет меньше, но их окажется трудно прочно закрепить на ступице. Роторы о менее чем 6 лопастях можно не иметь в виду: 2-лопастнику на 100 Вт нужен ротор диаметром 6,34 м, а 4-лопастнику той же мощности – 4,5 м. Для 6-лопастного зависимость мощность – диаметр выражается следующим образом:

  • 10 Вт – 1,16 м.
  • 20 Вт – 1,64 м.
  • 30 Вт – 2 м.
  • 40 Вт – 2,32 м.
  • 50 Вт – 2,6 м.
  • 60 Вт – 2,84 м.
  • 70 Вт – 3,08 м.
  • 80 Вт – 3,28 м.
  • 90 Вт – 3,48 м.
  • 100 Вт – 3,68 м.
  • 300 Вт – 6,34 м.

Оптимальным будет рассчитывать на мощность 10-20 Вт. Во-первых, лопасть из пластика размахом более 0,8 м без дополнительных мер защиты не выдержит ветер более 20 м/с. Во-вторых, при размахе лопасти до тех же 0,8 м линейная скорость ее концов не превысит скорость ветра более чем втрое, и требования к профилировке с круткой снижаются на порядки; здесь уже вполне удовлетворительно будет работать «корытце» с сегментным профилем из трубы, поз. Б на рис. А 10-20 Вт обеспечат питание планшетки, подзарядку смартфона или засветят лампочку-экономку.

Далее, выбираем генератор. Отлично подойдет китайский моторчик – ступица колеса для электровелосипедов, поз. 1 на рис. Его мощность как мотора – 200-300 Вт, но в режиме генератора он даст примерно до 100 Вт. Но подойдет ли он нам по оборотам?

Показатель быстроходности z для 6 лопастей равен 3. Формула для расчета скорости вращения под нагрузкой – N = v/l*z*60, где N – частота вращения, 1/мин, v – скорость ветра, а l – длина окружности ротора. При размахе лопасти 0,8 м и ветре 5 м/с получаем 72 об/мин; при 20 м/с – 288 об/мин. Примерно с такой же скоростью вращается и велосипедное колесо, так что свои 10-20 Вт от генератора, способного дать 100, мы уж снимем. Можно ротор сажать прямо на его вал.

Но тут возникает следующая проблема: мы, потратив немало труда и денег, хотя бы на моторчик, получили… игрушку! Что такое 10-20, ну, 50 Вт? А лопастный ветряк, способный запитать хотя бы телевизор, дома не сделаешь. Нельзя ли купить готовый мини-ветрогенератор, и не обойдется ли он дешевле? Еще как можно, и еще как дешевле, см. поз. 4 и 5. Кроме того, он будет еще и мобильным. Поставил на пенек – и пользуйся.

Второй вариант – если где-то валяется шаговый двигатель от старого 5- или 8-дюймового дисковода, или от привода бумаги или каретки негодного струйного или матричного принтера. Он может работать как генератор, и приделать к нему карусельный ротор из консервных банок (поз. 6) проще, чем собирать конструкцию наподобие показанной на поз. 3.

В целом по «лопастникам» вывод однозначен: самодельные – скорее для того, чтобы помастерить всласть, но не для реальной долговременной энергоотдачи.

Видео: простейший ветрогенератор для освещения дачи

Парусники

Парусный ветрогенератор известен давно, но мягкие полотнища его лопастей (см. рис.) начали делать с появлением высокопрочных износостойких синтетических тканей и пленок. Многолопастные ветряки с жесткими парусами широко разошлись по миру как привод маломощных автоматических водокачек, но их техданные ниже даже чем у каруселей.

Однако мягкий парус как крыло ветряка, похоже, оказался не так-то прост. Дело не в ветроустойчивости (производители не ограничивают максимально допустимую скорость ветра): яхсменам-парусникам и так известно, что ветру разорвать полотнище бермудского паруса практически невозможно. Скорее шкот вырвет, или мачту сломает, или вся посудина сделает «поворот оверкиль». Дело в энергетике.

К сожалению, точных данных испытаний не удается найти. По отзывам пользователей удалось составить «синтетические» зависимости для установки ВЭУ-4.380/220.50 таганрогского производства с диаметром ветроколеса 5 м, массой ветроголовки 160 кг и частотой вращения до 40 1/мин; они представлены на рис.

Разумеется, ручательств за 100% достоверность быть не может, но и так видно, что плоско-механистической моделью тут и не пахнет. Никак не может 5-метровое колесо на плоском ветре в 3 м/с дать около 1 кВт, при 7 м/с выйти на плато по мощности и далее держать ее до жестокого шторма. Производители, кстати, заявляют, что номинальные 4 кВт можно получить и при 3 м/с, но при установке их силами по результатам исследований местной аэрологии.

Количественной теории также не обнаруживается; пояснения разработчиков маловразумительны. Однако, поскольку таганрогские ВЭУ народ покупает, и они работают, остается предположить, что заявленные коническая циркуляция и пропульсивный эффект – не фикция. Во всяком случае, возможны.

Тогда, выходит, ПЕРЕД ротором, по закону сохранения импульса, должен возникнуть тоже конический вихрь, но расширяющийся и медленный. И такая воронка будет сгонять ветер к ротору, его эффективная поверхность получится больше ометаемой, а КИЭВ – сверхединичным.

Пролить свет на этот вопрос могли бы натурные измерения поля давления перед ротором, хотя бы бытовым анероидом. Если оно окажется выше, чем с боков в стороне, то, действительно, парусные ВСУ работают, как жук летает.

Самодельный генератор

Из сказанного выше ясно, что самодельщикам лучше браться или за вертикалки, или за парусники. Но те и другие очень медленные, а передача на быстроходный генератор – лишняя работа, лишние затраты и потери. Можно ли сделать эффективный тихоходный электрогенератор самому?

Да, можно, на магнитах из ниобиевого сплава, т. наз. супермагнитах. Процесс изготовления основных деталей показан на рис. Катушки – каждая из 55 витков медного 1 мм провода в термостойкой высокопрочной эмалевой изоляции, ПЭММ, ПЭТВ и т.п. Высота обмоток – 9 мм.

Обратите внимание на пазы под шпонки в половинах ротора. Они должны быть расположены так, чтобы магниты (они приклеиваются к магнитопроводу эпоксидкой или акрилом) после сборки сошлись разноименными полюсами. «Блины» (магнитопроводы) должны быть изготовлены из магнитомягкого ферромагнетика; подойдет обычная конструкционная сталь. Толщина «блинов» – не менее 6 мм.

Вообще-то лучше купить магниты с осевым отверстием и притянуть их винтами; супермагниты притягиваются со страшной силой. По этой же причине на вал между «блинами» надевается цилиндрическая проставка высотой 12 мм.

Обмотки, составляющие секции статора, соединяются по схемам, также приведенным на рис. Спаянные концы не должны быть натянуты, но должны образовывать петли, иначе эпоксидка, которой будет залит статор, застывая, может порвать провода.

Заливают статор в изложнице до толщины 10 мм. Центрировать и балансировать не нужно, статор не вращается. Зазор между ротором и статором – по 1 мм с каждой стороны. Статор в корпусе генератора нужно надежно зафиксировать не только от смещения по оси, но и от проворачивания; сильное магнитное поле при токе в нагрузке будет тянуть его за собой.

Видео: генератор для ветряка своими руками

Вывод

И что же мы имеем напоследок? Интерес к «лопастникам» объясняется скорее их эффектным внешним видом, чем действительными эксплуатационными качествами в самодельном исполнении и на малых мощностях. Самодельная карусельная ВСУ даст «дежурную» мощность для зарядки автоаккумулятора или энергоснабжения небольшого дома.

А вот с парусными ВСУ стоит поэкспериментировать мастерам с творческой жилкой, особенно в мини-исполнении, с колесом 1-2 м диаметром. Если предположения разработчиков верны, то с такого можно будет снять, посредством описанного выше китайского движка-генератора, все его 200-300 Вт.

Андрей сказал(а):

Спасибо за вашу бесплатную консультацию…А цены “от фирм”не реально дороги,и я думаю,что мастеровые люди из глубинки смогут сделать генераторы подобные вашему.А аккамуляторы Li-po можно выписать из Китая,инверторы в Челябинске делают очень хорошие (с плавным синусом).А паруса,лопасти или роторы – это очередной повод для полёта мысли наших рукастых Русских мужиков.

Иван сказал(а):

вопрос:
Для ветряков с вертикальной осью(позиция 1) и варианта “Ленца” возможно добавить дополнительную деталь – крыльчатку,выставляющуюся по ветру, и закрывающую от него же бесполезную сторону(идущую в сторону ветра). То есть ветер будет не лопасть тормозить, а этот “экран”. Постановка по ветру “хвостом”, находящимся за самим ветряком ниже и выше лопостей(гребней). Читал статью и родилась идея.

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

Самостоятельная сборка ветрогенератора в первую очередь предполагает создание самого генератора. И, как оказывается, это можно сделать легко из подручных средств.

Варианты изготовления

За длительное время существования альтернативной энергетики были созданы электрогенераторы самых разных конструкций. Их можно сделать своими руками. Большинство людей думает, что это трудно, так как требуется определенный объем знаний, различные дорогостоящие материалы и т.д. При этом генераторы будут очень низкой производительности по причине большого количества просчетов. Именно эти мысли заставляют желающих отказаться от идеи сделать ветряк своими руками. Но все утверждения являются абсолютно неправильными, и сейчас мы это покажем.

Умельцы чаще всего создают электрогенераторы для ветряка двумя методами:

  1. Из ступицы;
  2. Переделывают готовый двигатель под генератор.

Рассмотрим эти варианты более подробно.

Изготовление из ступицы

Самым разрекламированным среди всех вариантов является обычный самодельный дисковый генератор для ветряка, который создается с использованием неодимовых магнитов. Главными его преимуществами являются: простота сборки, не требует особых знаний, возможность не придерживаться точных параметров. Даже если будут допущены ошибки — это не страшно, так как в любом случае ветряком вырабатывается электричество и его можно довести до ума с приходом практики.

Итак, для начала нам нужно подготовить основные элементы для сборки ветрогенератора:

  • ступица;
  • тормозные диски;
  • неодимовые магниты 30х10 мм;
  • медная лакированная проволока диаметром 1,35 мм;
  • клей;
  • фанера;
  • стеклоткань;
  • эпоксидная или полиэфирная смола.

Самодельные дисковые генераторы делаются на основе ступицы и двух тормозных дисков от ВАЗ 2108. Можно с уверенностью говорить, что практически у любого хозяина найдутся в гараже эти части автомобиля.

На тормозных дисках мы расположим неомагниты. Их нужно брать в количестве, делимом на 4. Рекомендуемо применять 12+12 или 16+16 единиц. Это самые приемлемые варианты по эффективности и затратам. Располагать их нужно с чередованием полюсов. Статор нашего самодельного электрогенератора для ветряка также делается с использованием фанеры, которая выпилена по форме. Далее, на него устанавливаются намотанные катушки, и все заливается эпоксидной или полиэфирной смолой. Из стеклоткани рекомендуется вырезать два круга такого же размера, как и статор. Они будут закрывать верхнюю и нижнюю стороны для большей жесткости конструкции.

Неомагниты можно применять любой формы. Старайтесь заполнять полностью все колесо с минимальными зазорами между элементами. Катушки требуется наматывать так, чтобы общее количество витков было в пределах 1000-1200. Это даст возможность генератору выдавать при 200 об/мин 30 В и 6 А. Также будет значительно лучше делать их овальными, а не круглыми. Ветровой электрогенератор станет более мощным благодаря такому решению.

=»Неомагниты для ветрогенератора» width=»640″ height=»480″ class=»aligncenter size-full wp-image-697″ />
Что касается статора нашего будущего генератора для ветряка, то его толщина обязательно должна быть меньше, чем размер магнитов, например, если магниты имеют толщину 10 мм, то статор лучше всего выполнить 8 мм (по 1 мм зазора оставить). Размеры дисков же должны быть больше толщины магнитов. Все дело в том, что через железо все магниты подпитывают друг друга и чтобы вся сила уходила именно в полезную работу требуется выполнять это условие. Если учитывать это, делая электрогенератор своими руками, то можно немного повысить его эффективность.

Подключение катушек

Собранный своими руками генератор для ветряка может быть как однофазным, так и трехфазным. Большинство начинающих выбирают первый вариант, так как он немного проще и легче. Но у однофазного подключения есть недостатки в виде повышенной вибрации под нагрузкой (гайки могут раскручиваться) и своеобразный гул. Если данные показатели не имеют значения, то катушки требуется соединять следующим образом: конец первой нужно спаять с концом второй, вторую катушку с третьей и т.д. Если что-то перепутать — схема работать не будет. Хотя здесь сложно что-то сделать не так.


Трехфазная схема хоть и требует большей внимательности, но при этом установка под нагрузкой не гудит и практически не вибрирует, а разведенные фазы под 120 градусов повышают мощность в определенных режимах работы. Трехфазное подключение катушек своими руками заключается в соединении их через 3 единицы. Например, при использовании 12 катушек распаиваются для первой фазы 1, 4, 7 и 10. Для второй — 2, 5, 8 и 11. Для третьей — 3, 6, 9 и 12. Все шесть получившихся концов можно смело выводить наружу из статора. Соединять фазы можно звездой (для получения большего напряжения) или треугольником (для получения большей силы тока).

Элементы основы можно заказать у токаря. Это будет более верным решением, так как автомобильная ступица и тормозные диски довольно массивные. Также можно сделать небольшую хитрость в виде увеличения диаметра всего колеса, ведь чем он больше, тем выше радиальная скорость ветрогенератора.

Дисковые генераторы имеют простую конструкцию, высокую эффективность и у них отсутствует эффект залипания. Дополнительно, ветровые установки, созданные на их основе, довольно легкие. Но по причине отсутствия сердечников, магнитов требуется использовать в два раза больше. Рассмотренный вариант является самым простым для создания ветряка своими руками.

Изготовление из асинхронного двигателя

Генератор для ветряка также можно сделать благодаря переделке асинхронного двигателя. Для этого требуется или переточить ротор на размер неомагнитов, или сделать его своими руками. Переточка родного ротора предполагает еще и использование стальной гильзы, которая бы замыкала магнитное поле. По этой причине нужно учитывать и ее толщину. Можно использовать как круглые, так и квадратные магниты. Последний вариант более эффективный по причине возможности установить их с большей плотностью.

Вследствие неизбежного залипания ротора, клеить неомагниты нужно с небольшим скосом. Смещение требуется делать по принципу зуб + паз. Делая генератор своими руками нужно также перематывать катушки. Причиной тому является использование обмотки из тонкого провода, который не рассчитан на большие напряжения и ампераж. Если используются низкооборотные двигатели, то перематывать их под генератор не требуется, так как у них уже используется хороший, толстый провод.

Перематывать двигатели под генераторы своими руками несложно, но рекомендуется доверить данную работу электрикам. Это позволит избежать ошибок и при этом ветряки из асинхронников получаются значительно эффективнее.


Решение оборудовать ветровые установки мультипликатором позволяет не перематывать двигатель. Также можно поставить небольшой электромагнит для самовозбуждения. Его запитка производится за счет самого вращения ветряка, а чтобы он не потреблял электричество с аккумулятора устанавливается в цепь мощный диод.

В конце хотелось бы сказать, что сделать самодельный генератор для своего ветряка довольно просто. И для этого не требуется особых знаний. Нужно запастись терпением и готовностью проводить опыты. Но при этом следует помнить о технике безопасности, так как электрогенераторы могут вырабатывать большие токи.

Сложно не заметить, насколько стабильность поставок электроэнергии загородным объектам отличается от обеспечения городских зданий и предприятий электроэнергией. Признайтесь, что вы как владелец частного дома или дачи не раз сталкивались с перебоями, связанными с ними неудобствами и порчей техники.

Перечисленные негативные ситуации вместе с последствиями перестанут осложнять жизнь любителей природных просторов. Причем с минимальными трудовыми и финансовыми затратами. Для этого нужно всего лишь сделать ветряной генератор электроэнергии, о чем мы детально рассказываем в статье.


Цена на электроэнергию неизменно растёт и, естественно, каждый хозяин старается оптимизировать расходы на её оплату. Здесь все средства хороши - начиная от средств экономии, техники с низким индексом потребления энергии, энергосберегающих ламп, и заканчивая использование многотарифных счётчиков электричества. Тем не менее, всегда останется заманчивой перспектива получения электричества не от государства, а от природы. Одним из самых эффективных подобных устройств остаётся ветрогенератор, который используется на Западе уже фактически наравне, а то и более широко, чем классические ТЭС или АЭС.

Цена и эффективность генератора

Естественно, самым практичным решением для получения электричества из энергии ветра, станет мощное устройство, способное вырабатывать необходимое количество энергии для обеспечения потребителей во всем доме. Ветрогенераторы своими руками на 220В могут быть разной мощности и мы рассмотрим принципы изготовления каждого возможного устройства из того, что может оказаться под руками у каждого рачительного хозяина.

Но для начала стоит провести хотя бы предварительный расчёт ветрогенератора и его рентабельности. К примеру, бытовой прибор на 800 кВт российской сборки обойдётся в полторы тысячи долларов США за один киловатт. Дорого. Китайская продукция, не отличающаяся надёжностью и точностью номиналов выльется в $900 за 1кВт. Тоже дорого. Заметьте, что это только сам генератор, без периферийного оборудования. Это фактически неподъемная цена для частника, поэтому постараемся использовать все, что есть под руками и сделать собственную автономную систему.

Как определиться с мощностью ветряка

Расчёт мощности ветрогенератора - это сложный и трудоёмкий процесс, который применим к определённому генератору-исходнику. Самый простой вариант - задействовать динамо-машину от трактора или автомобиля. Такое устройство фактически не требует доработок и может применяться в системе энергообеспечения «как есть». Безусловно, можно долго разговаривать об устройствах на неодимовых магнитах, только, к примеру, в деревне Архиповка Орловской области их не было в жизни и не будет никогда, а списанных тракторов - тьма.

Вертикальные или роторные ветрогенераторы?

Лопастные вертикальные генераторы - одни из самых популярных в мире, однако для их постройки необходимо точно выполнить расчёт лопасти, её формы и размеров. Как показывает опыт создания таких устройств энтузиастами, самые эффективные лопастные генераторы - с регулируемым углом поворота лопасти. Средние размеры каждой из шести лопастей - 650х120 мм, а самый эффективный угол поворота относительно своей оси - около 12 градусов, хотя можно ставить эксперименты в каждом частном случае.

Роторный ветряк для дома выполняется с горизонтальным расположением оси генератора, на которой установлен ротор. Он может быть выполнен по нескольким схемам, которые представлены ниже. Самый простой вариант - изготовление ротора из цилиндрической ёмкости. Это может быть как пластиковая бочка, баллон для газа, в конце концов, кастрюля. Ёмкость должна быть разделена на четыре сегмента, каждый из которых крепится ступице. Ступица установлена на металлический каркас, примерный чертёж которого показан на рисунке.

Детали и расходные материалы, электрическая схема

Маломощный ветряк для дома можно собрать при наличии скромного набора б/у-шных устройств и деталей:

автомобильная АКБ, чем свежее и чем больше ёмкость, тем лучше,

инвертор на 300-700 Вт,

автомобильное или тракторное реле зарядки (в зависимости от вольтажа генератора),

контрольный прибор (вольтметр),

Для коммутации прибора с сетью электрической сетью используются провода сечением площадью не менее 4 мм². Готовая установка подключается по схеме, показанной на фото через предохранители 8, которая размыкается выключателем 9 для обслуживания и ремонта. Номинал резистора 1 подбирается опытным путём, а амперметр 5 может быть установлен на выходе из преобразователя 5 по желанию. Также для удобства использования конструкции может быть использован переменный резистор 4 для регулировки напряжения. Более подробная схема инвертора представлена ниже.

Таким образом можно собрать ветрогенератор для обеспечения минимальной потребности в электричестве. Расходуйте и производите энергию с умом, удачной всем работы!

Ветрогенераторы на 220В своими руками
Ветрогенераторы на 220В своими руками Цена на электроэнергию неизменно растёт и, естественно, каждый хозяин старается оптимизировать расходы на её оплату. Здесь все средства хороши - начиная от


Ветрогенератор или в простонародье ветряк - нехитрое приспособление, обеспечивающее своему хозяину немалую экономию за счет выработки бесплатного электричества. Такая установка - мечта любого владельца отрезанного от централизованных сетей участка или дачника, недовольного вновь полученной квитанцией за потребление электроэнергии.

Разобравшись в конструкции ветрогенератора, принципе его функционирования, изучив чертежи, можно самостоятельно сделать и установить ветряк, обеспечив свой дом неограниченной альтернативной энергией.

Краткое содержимое статьи:

Законно ли использование ветра?

Создание собственной, хоть и компактной, но электростанции - вещь серьезная, поэтому логично, что невольно возникает вопрос: а законно ли их использование? Да, если мощность запускаемой от ветра установки не будет превышать 1 кВт, что вполне хватит для обеспечения электрическим током среднего загородного дома.

Дело в том, что именно с таким показателем мощности устройство считается бытовым и не требует обязательной регистрации, сертификации, согласования, постановки на учет и, тем более, не облагается никаким налогом.

Впрочем, перед тем, как сделать ветрогенератор для дома, лучше обезопасить себя и учесть несколько моментов:

  • Не приняты ли в регионе проживания особые ограничения на использование альтернативных источников энергии?
  • Какова допустимая на местности высота мачты?
  • Не будет ли шум от редуктора и лопастей превышать установленные нормативы?
  • Предусматривать ли защиту от создаваемых эфирных помех?
  • Не станет ли мачта мешать миграции птиц или вызывать другие экологические проблемы?

Если заранее продумать все нюансы, то ни налоговая, ни экологические службы, ни соседи не смогут предъявить претензии и воспрепятствовать получению бесплатной электроэнергии.

Как работает ветряк?

На фото готовые самодельные ветрогенераторы представлены вытянутыми металлическими конструкциями на трех или четырех опорах, с лопастями, двигающимися от ветра. В итоге получаемая потоком ветра кинетическая энергия преобразуется в механическую, которая в свою очередь запускает ротор и становится электрическим током.

Данный процесс является результатом налаженной работы нескольких обязательных составных элементов ветроэлектрической установки (ВЭУ):

  • Пропеллер из двух и более лопастей,
  • Ротор турбины,
  • Редуктор,
  • Контроллер,
  • Ось электрического генератора и генератор,
  • Инвертор,
  • Аккумулятор.

Также необходимо предусмотреть тормозной блок, гондолу, мачту, флюгер, низко и высокоскоростной вал. Устройство определяет и принцип работы ветрогенератора: вращающийся ротор производит трехфазный переменный ток, проходящий через систему контроллера и заряжающий аккумулятор постоянного тока.

Конечные амперы преобразуются инвертором и направляются по подключенной проводке к выходным точкам: розеткам, освещению, бытовой технике и электроприборам.

Как сделать своими руками?

Самой надежной и простой по конструкции считается роторная ВЭУ, представляющая собой установку с вертикальной осью вращения. Готовый самодельный генератор такого типа способен полностью обеспечить энергопотребление дачи, включая оснащение жилого помещения, хозяйственных строений и уличное освещение (правда, не слишком яркое).

Чтобы сделать ветрогенератор, понадобятся детали конструкции, расходные материалы и инструменты. Первым делом необходимо подыскать подходящие составные элементы ветряка, многие из которых можно найти среди старых запасов:

  • Генератор от автомобиля с мощностью около 12 V,
  • Аккумуляторная батарея на 12 V,
  • Кнопочный полугерметичный выключатель,
  • Инвентор,
  • Реле автомобиля, служащее для зарядки аккумулятора.

Также потребуются расходные материалы:

  • Крепежи (болты, гайки, изолирующая лента),
  • Стальная или алюминиевая емкость,
  • Проводка сечением в 4 кв. мм (два метра) и 2,5 кв. мм (один метр),
  • Мачта, тренога и другие элементы для усиления устойчивости,
  • Крепкая веревка.

Желательно найти, изучить и распечатать чертежи ветрогенераторов своими руками. Потребуются и инструменты, в числе которых болгарка, метр, пассатижи, сверло, острый нож, электродрель, отвертки (крестовая, минусовая, индикаторная) и гаечные ключи.

Подготовив все необходимое, можно приступать к сборке, ориентируясь на пошаговую инструкцию, рассказывающую, как сделать ветрогенератор своими руками:

  • Из металлической емкости вырезать лопасти одинакового размера, оставив у основания нетронутую полоску металла в несколько сантиметров.
  • Симметрично проделать отверстия дрелью для имеющихся болтов в дне основания емкости и шкиве генератора.
  • Отогнуть лопасти.
  • Зафиксировать на шкиве лопасти.
  • Установить и закрепить генератор на мачте хомутами или веревкой, отступив от верха порядка десяти сантиметров.
  • Наладить проводку (для подключения аккумулятора достаточно метровой жилы сечением в 4 кв. мм, для нагрузки освещением и электроприборами - 2,5 кв. мм).
  • Отметить схему подключения, цветовую и буквенную маркировку для будущего ремонта.
  • Установить преобразователь проводом с четвертным сечением.
  • При необходимости украсить конструкцию флюгером и покрасить.
  • Закрепить провода, обмотав мачту установки.

Ветрогенераторы своими руками на 220 Вольт - это возможность обеспечить дачу или загородный дом бесплатной электроэнергией в кратчайшие сроки. Наладить такую установку можно даже новичку, а большинство деталей для конструкции уже давно без дела лежат в гараже.

Онлайн помощник домашнего мастера
Как использовать ветер в своих целях и как работает ветрогенератор своими руками. Как работает современный ветряк и как его сделать своими руками. Фото лучших и самых простых моделей.



Принцип работы бытовой ветряной электростанции прост: воздушный поток вращает лопасти ротора, насаженного на вал генератора и создает в его обмотках переменный ток.

Неисчерпаемая энергия, которую несут с собой воздушные массы, всегда привлекала внимание людей. Наши прадеды научились запрягать ветер в паруса и колеса ветряных мельниц, после чего он два столетия бесцельно носился по необозримым просторам Земли.

Сегодня для него вновь нашлась полезная работа. Ветрогенератор для частного дома из разряда технических новинок становится реальным фактором нашего быта.

Давайте поближе познакомимся с ветряными электростанциями, оценим условия их рентабельного применения и рассмотрим существующие разновидности. Домашние умельцы получат в нашей статье информацию для размышления по теме самостоятельной сборки ветряка и устройствах, необходимых для его эффективной работы.

Что такое ветрогенератор?

Принцип работы бытовой ветряной электростанции прост: воздушный поток вращает лопасти ротора, насаженного на вал генератора и создает в его обмотках переменный ток. Полученное электричество запасается в аккумуляторах и по мере необходимости расходуется бытовыми приборами. Конечно, это упрощенная схема работы домашнего ветряка. В практическом плане он дополняется устройствами, выполняющими преобразование электричества.

Сразу за генератором в энергоцепочке стоит контроллер. Он преобразует трехфазный переменный ток в постоянный и направляет его на зарядку аккумуляторов. Большинство бытовых приборов не может работать от «постоянки», поэтому за аккумуляторами ставится другое устройство – инвертор.

Он выполняет обратную операцию: превращает постоянный ток в бытовой переменный напряжением 220 Вольт.

Понятно, что эти преобразования не проходят бесследно и забирают от исходной энергии довольно приличную часть (15-20%).

Если ветряк работает в паре с солнечной батареей или другим генератором электричества (бензиновым, дизельным), то схема дополняется автоматическим выключателем (АВР). При отключении основного источника тока, он активирует резервный.

Для получения максимальной мощности ветряной генератор должен располагаться вдоль ветрового потока. В простых системах реализуется принцип флюгера.

Для этого на противоположном конце генератора закрепляется вертикальная лопасть, разворачивающая его навстречу ветру.

В более мощных установках стоит поворотный электромотор, управляемый датчиком направления.

Основные виды ветрогенераторов и их особенности

Существует две разновидности ветрогенераторов:

  1. С горизонтальным расположением ротора.
  2. С вертикальным ротором.

Первый тип – самый распространенный. Он характеризуется высоким КПД (40-50%), но имеет повышенный уровень шума и вибрации. Кроме этого, для его установки требуется большое свободное пространство (100 метров) или высокая мачта (от 6 метров).

Генераторы с вертикальным ротором энергетически менее эффективны (КПД почти в 3 раза ниже, чем у горизонтальных).

К их преимуществам можно отнести простой монтаж и надежность конструкции. Низкая шумность позволяет ставить вертикальные генераторы на крышах домов и даже на уровне земли. Эти установки не боятся обледенения и ураганов.

Они запускаются от слабого ветра (от 1,0-2,0 м/с) в то время, как горизонтальному ветряку нужен воздушный поток средней силы (3,5 м/с и выше). По форме рабочего колеса (ротора) вертикальные ветрогенераторы весьма разнообразны.

Благодаря малой частоте вращения ротора (до 200 об/мин), механический ресурс таких установок существенно превышает показатели горизонтальных ветрогенераторов.

Как рассчитать и подобрать ветрогенератор?

Ветер это не природный газ, качаемый по трубам и не электроэнергия, бесперебойно поступающая по проводам в наш дом. Он капризен и непостоянен. Сегодня ураган срывает крыши и ломает деревья, а завтра сменяется полным штилем.

Поэтому перед покупкой или самостоятельным изготовлением ветряка нужно оценить потенциал воздушной энергии в своем районе. Для этого следует определить среднегодовую силу ветра. Эту величину можно узнать в интернете по соответствующему запросу.

Получив вот такую таблицу, находим район своего проживания и смотрим на интенсивность его окраски, сравнивая ее с оценочной шкалой. Если среднегодовая скорость ветра получится меньше 4,0 метров в секунду, то ветряк ставить нет смысла. Он не даст нужного количества энергии.

Если сила ветра достаточна для установки ветряной электростанции, то можно переходить к следующему шагу: подбору мощности генератора.

Если речь идет об автономном энергоснабжении дома, то в расчет берут среднестатистическое потребление электроэнергии 1 семьей. Оно находится в диапазоне от 100 до 300 кВт*ч в месяц. В регионах с низким годовым ветропотенциалом (5-8 м/сек) такое количество электричества способен сгенерировать ветряк мощностью 2-3 кВт.

При этом следует учитывать, что зимой средняя скорость ветра выше , поэтому выработка энергии в этот период будет больше, чем летом.

Ветряк своими руками. Забава или реальная экономия?

Скажем сразу, что сделать ветрогенератор своими руками полноценным и эффективным непросто. Грамотный расчет ветрового колеса, передаточного механизма, подбор подходящего по мощности и оборотам генератора – отдельная тема. Мы дадим лишь краткие рекомендации по основным этапам данного процесса.

Генератор

Автомобильные генераторы и электродвигатели от стиральных машин с прямым приводом для этой цели не подходят. Они способны генерировать энергию от ветрового колеса, но она будет незначительной. Автогенераторам для эффективной работы нужны очень высокие обороты, которые не может развить ветряк.

В моторах для стиралок другая проблема. Там стоят ферритовые магниты, а для ветрогенератора нужны более производительные – ниодимовые. Процесс их самостоятельного монтажа и намотки токоведущих обмоток требует терпения и высокой точности.

Мощность устройства, собранного своими руками, как правило, не превышает 100-200 Ватт.

В последнее время среди самодельщиков пользуются популярностью мотор-колеса для велосипедов и скутеров.

С позиций ветроэнергетики это мощные ниодимовые генераторы, оптимально походящие для работы с вертикальными ветровыми колесами и зарядки аккумуляторов. С такого генератора можно снимать до 1 кВт ветровой энергии.

Винт

Проще всего изготавливаются парусный и роторный винты. Первый состоит из легких изогнутых трубок, закрепленных на центральной пластине. На каждую трубку натягиваются лопасти из прочной ткани. Большая парусность винта требует шарнирного крепления лопастей, чтобы при урагане они складывались и не деформировались.

Роторная конструкция ветрового колеса используется для вертикальных генераторов. Она проста в изготовлении и надежна в работе.

Ветрогенераторы для дома: виды, изготовление своими руками
Принцип работы бытовой ветряной электростанции прост: воздушный поток вращает лопасти ротора, насаженного на вал генератора и создает в его обмотках переменный

В этой статье мы подробно разберем, как сделать ветрогенератор своими руками. Ведь быт современного человека без электроэнергии – трудно представим. И даже небольшие перебои в подаче электричества становятся порой «парализующим моментом» для нормальной жизни в собственном доме. А такие неполадки, приходится признать, для некоторых загородных поселков или населенных пунктов в сельской местности – увы, не редкость. Значит, необходимо каким-то образом обезопасить себя от неприятностей, обзавестись резервным источником энергии. А если принять в расчет еще и постоянно растущие тарифы, то наличие собственного источника, да еще и работающего практически «забесплатно», становится заветной мечтой многих владельцев домов.

Одним из направлений развития «бесплатной энергетики» в наше время является использование энергии ветра. Многие, наверное, видели впечатляющие картины огромных ветряков, успешно применяемых в некоторых странах Европы – кое-где доля выработанной ветром энергии уже достигает нескольких десятков процентов от общего объема. Вот и возникает соблазн – а не попробовать ли и мне сделать ветрогенератор своими руками, чтобы раз и навсегда получить независимость от электросетей?

Вопрос резонный, но следует сразу несколько охладить пыл «мечтателя». Чтобы создать действительно качественную, производительную установку по выработке электроэнергии, требуются немалые знания в механике и электротехнике. Нужно быть весьма опытным мастером на все руки – предстоит целый ряд операций высокой сложности, требующих точного проектирования и квалифицированного подхода в исполнении. По совокупности этих причин, как можно судить по обсуждениям на форумах, довольно много «соискателей» либо не получили ожидаемого результата, либо и вовсе отказались от задуманного проекта.

Поэтому в данной статье будет дана обзорная картина, показывающая общие проблемы и направления их решения в процессе создания ветрогенераторов. Можно будет примерно оценить масштабность работ и трезво взвесить свои возможности – стоит ли браться самому.

Что это такое – ветрогенератор? Общее устройство системы

Существует несколько способов получения электрической энергии – за счет воздействия потоком фотонов (световой, например, солнечные батареи), за счет определенных химических реакций (широко применяется в элементах питания), за счет разницы температур. Но шире всего в настоящее время используется преобразование кинетической энергии в электрическую. Это преобразование происходит в специальных устройствах, которые как раз и называются генераторами.

Принцип работы генератора преобразователя кинетической энергии в электрическую, раскрыт и описан еще в XIX веке Фарадеем.


Принцип устройства простейшего электрического генератора

Он заключается в том, что если проводящую рамку разместить в изменяющемся магнитном поле, то в ней будет индуцироваться электродвижущая сила, которая при замыкании цепи приведет к появлению электрического тока. А изменение магнитного потока можно добиться вращением этой рамки в магнитном поле, или создаваемом постоянными магнитами, или появляющегося в обмотках возбуждения. При изменении положения рамки меняется величина пересекающего ее магнитного потока. И чем выше скорость изменения, тем больше показатели и наводимой ЭДС. Таким образом, чем больше оборотов передается ротору (вращающейся части генератора), те большего напряжения можно добиться на выходе.

Схема, безусловно, показана с большими упрощениями, просто для уяснения принципа.

Передача вращения на ротор генератора может осуществляться по-разному. И один из путей найти бесплатный источник энергии, который приведет в движение кинематическую часть устройства – это «поймать» силу ветра. То есть примерно так же, как это удалось сделать когда-то создателям ветряных мельниц.

Таким образом, устройство ветрового генератора подразумевает наличие генерирующего устройства и механизма передачи его статору вращательного движения, то есть ветряка. Кроме того, обязательным условием становится конструкция, обеспечивающая надежную установку системы, так как ее часто приходится размещать на немалой высоте, чтобы полноценной «ловле ветра» не мешали естественные или искусственные препятствия. В ряде случаев используется еще и кинематическая передача, предназначенная для повышения количества оборотов ротора.


Один из примеров повышающей передачи вращения от ветряка на генератор

Но и это – еще не все. Наличие и скорость ветра – величины чаще всего крайне непостоянные. И ставить потребление выработанной энергии в зависимость от «капризов погоды» - дело неразумное. Поэтому ветрогенератор обычно работает в связке с системой аккумуляции энергии.


Выработанный ток выпрямляется, стабилизируется и через специальное устройство-контроллер или поступает непосредственно на дальнейшее потребление, или перенаправляется на зарядку включённых в схему мощных аккумуляторов. С аккумуляторов через инвертор, преобразующий постоянный ток в переменный нужного напряжения и частоты, питание поступает к точкам потребления. Аккумуляторы становятся своеобразным буферным звеном: если текущая нагрузка меньше текущей (очень зависимой от силы ветра) мощности генератора, или если на протяжении какого-то времени и вовсе не подключены приборы потребления, то идет зарядка батарей. Если нагрузка становится выше вырабатываемой мощности – батареи разряжаются.

Интересный момент – именно эта особенность ветровой энергетической установки позволяет планировать мощность самого генератора, не исходя из пиковых показателей нагрузки (за это будет отвечать в большей мере инвертор), а отталкиваясь из прогнозируемого потребления энергии в течение определенного периода (например, месяца).

Безусловно, в быту могут использоваться и более простые схемы. Например, ветровая установка просто обслуживает какое-то низковольтное осветительное оборудование и т.п.


Плюсы и минусы ветровых электростанций

Для примера посмотрим вначале на простейшую конструкцию ветрогенератора, которую сможет собрать даже школьник средних классов. Практическое применение такой «электростанции» – не особо широкое, но просто чтобы расширить свое понимание и обрести некоторые навыки – почему бы и нет?

Ветер - это бесплатная энергия! Так давайте же её использовать в личных целях. Если создание ВЭС в промышленных масштабах это очень дорого, потому что кроме генератора нужно провести ряд исследований и расчётов, государство не берет на себя такие расходы, а инвесторам в странах бывшего СССР - это, почему-то не вызывает особого интереса. То в частном порядке можно сделать мини-ветряк для собственных нужд. Стоит понимать, что проект перевода вашего дома на альтернативную энергию очень дорогое занятие.

Как уже было сказано: нужно произвести длительные наблюдения и расчёты, чтобы подобрать оптимальное соотношение размеров ветряного колеса и генератора, подходящее к вашему климату, розе ветров и среднегодовой скорости ветра.

Эффективность ветроэлектрической установки в пределах одного региона может отличаться в разы, это связано с тем, что движение ветра зависит не только от климатического пояса, но и от рельефа местности.

Однако вы можете узнать, что такое ветроэнергетика с минимальными затратами собрав бюджетную установку для питания маломощной нагрузки, типа смартфона, лампочек или радиоприёмника. При должном подходе вы можете обеспечить электроэнергией небольшой дом или дачный участок.

Давайте рассмотрим каким образом можно сделать простейшую ветроэлектрическую установку своими руками.

Маломощные ветряки из подручных средств

Компьютерный кулер представляет собой бесколлектроный двигатель, который в своем первоначальном виде не представляет практической ценности.

Его нужно перемотать, так как в оригинале обмотки соединены неподходящим образом. Мотать катушки поочередно:

    По часовой стрелке;

    Против часовой стрелки;

    По часовой стрелке;

    Против часовой стрелки.

Соединять соседние катушки нужно последовательно, а еще лучше мотать одним куском провода переходя от одного паза к другому. Толщину провода в этом случае подбирать произвольно, лучше будет если вы намотаете как можно больше витков, а это возможно при использовании наименее тонким проводом.

Выходное напряжение с такого генератора будет переменным, а его величина будет зависеть от оборотов (скорости ветра), установите диодный мост из диодов Шоттки, чтобы выпрямить его до постоянного, обычные диоды подойдут, но будет хуже, т.к. на них упадёт напряжение от 1 до 2-х вольт.

Лирическое отступление, немного теории

Запомните величина ЭДС равняется:

где L - длина проводника помещенного в магнитное поле; V - скорость вращения магнитного поля;

При модернизации генератора вы можете влиять только на длину проводника, то есть на количество витков каждой из катушек. Количество витков - определяет выходное напряжение, а толщина провода - максимальную токовую нагрузку.

На практике влиять на скорость ветра нельзя. Однако из этой ситуации тоже есть выход, можно, узнав типовую скорость ветра для вашей местности спроектировать подходящий по оборотам винт для ветроэлектрической установки, а также редуктор или ременную передачу, для обеспечения достаточных оборотов для генерации нужного по величине напряжения.

ВАЖНО: Быстрее не значит лучше!!! При слишком большой скорости вращения ветрогенератора сократиться его ресурс, ухудшаться смазочные свойства втулок или подшипников ротора, и он заклинит, а быстрее всего произойдет пробой изоляции обмоток в генераторе

Генератор состоит из:

Увеличиваем мощность генератора из компьютерного кулера

Во-первых, чем больше лопастей и диаметр колеса - тем лучше, поэтому присмотритесь к 120-мм кулерам.

Во-вторых, мы уже сказали, что напряжение зависит и от магнитного поля, дело в том, что промышленные генераторы высокой мощности имеют обмотки возбуждения, а низкой мощности - сильные магниты. В кулере магниты крайне слабые и не позволяют добиться хороших результатов от генератора, да и зазор между ротором и статором весьма велик - порядка 1 мм, и это при и без того слабых магнитах.

Решение этой проблемы кардинально изменить конструкцию генератора. Вернее, от кулера потребуется только крыльчатка, в качестве самого генератора применим моторчик от принтера или любой другой бытовой техники. Наиболее часто встречаются щеточные двигатели с возбуждением от постоянных магнитов.

В результате это будет выглядеть так.

Мощности подобного генератора хватит, чтобы запитать светодиоды, радиоприемник. Для подзарядки телефона его не хватит, телефон будет отображать процесс заряда, но ток будет крайне мал, до 100 Ампер, при ветре 5-10 метров в секунду.

Шаговые двигателя в роли ветрогенератора

Шаговый двигатель очень часто встречается в компьютерной и бытовой технике, в различных проигрывателях, флоппи-дисководах (интересны старые модели 5.25”), принтерах (особенно матричных), сканерах и т.д.

Данные двигатели без переделок могут работать в роли генератора, они представляют собой ротор с постоянными магнитами, и статор с обмотками, типовая схема подключения шагового двигателя в режиме генератора изображена на рисунке.

В схеме установлен линейный стабилизатор на 5 Вольт, типа L7805, что позволит без опасения подключать мобильные телефоны к такому ветряку для их зарядки.

На фото генератор из шагового двигателя с установленными лопастями.

Двигатель в конкретном случае с 4-мя выходными проводами, схема соответственно под него. Двигатель с такими габаритами в режиме генератора выдаёт примерно 2 Вт при слабом ветре (скорость ветра около 3 м/с) и 5 м/с при сильном (до 10 м/с).

Кстати вот аналогичная схема со стабилитроном, вместо L7805. Позволяет заряжать Li-ion батареи.

Доработка самодельного ветряка

Чтобы генератор работал эффективнее нужно сделать ему направляющий хвостовик и закрепить его на мачте подвижно. Тогда при изменении направления ветра - будет изменяться направление ветрогенератора. Тогда возникает следующая проблема - кабель, идущий от генератора к потребителю будет закручиваться вокруг мачты. Чтобы это решить нужно обеспечить подвижный контакт. На Ebay и Aliexpress продаётся готовое решение.

Нижних три провода - неподвижны идут вниз, а верхний пучок проводов - подвижен, внутри установлен скользящий контакт или щеточный механизм. Если у вас нет возможности купить, проявите смекалку, и, вдохновившись решением конструкторов автомобиля Жигули, а именно реализацией подвижного контакта кнопки сигнала на руле и сделайте что-то похожее. Или воспользуйтесь контактной площадкой от электрочайника.

Соединив разъёмы, вы получите подвижный контакт.

Мощный ветрогенератор из подручных средств.

Для получения большей мощности вы можете использовать два варианта:

1. Генератор из шуруповерта (10-50 Вт);

Из шуруповерта понадобиться только моторчик, вариант аналогичен предыдущему, в качестве винта вы можете использовать лопасти от вентилятора, это увеличит итоговую мощность вашей установки.

Вот пример реализации такого проекта:

Обратите внимание как здесь реализована шестеренчатая повышающая передача - вал ветрогенератора расположен в трубе, на его конце расположена шестерня, которая передаёт вращение меньшей шестерне закрепленной на валу двигателя. Повышение оборотов двигателя имеет место и в промышленных ветряных электроустановках. Редуктора применяются повсеместно.

Однако в условиях самоделки изготовить редуктор становиться большой проблемой. Вы можете извлечь редуктор из электроинструмента, он там нужен чтобы понизить высокие обороты на валу коллекторного двигателя в нормальные обороты патрона на дрели, или диска болгарки:

В дрели установлен планетарный редуктор;

    В болгарке установлен угловой редуктор (станет полезным для монтажа некоторых установок и уменьшит нагрузку с хвоста ВЭУ);

    Редуктор от ручной дрели.

Такой вариант самодельного ветрогенератора уже может заряжать 12 В аккумуляторы, однако нужен преобразователь для формирования зарядного тока и напряжения. Эту задачу можно упростить применив автомобильный генератор.

Преимущество такого генератора - возможность использовать его для зарядки автомобильных аккумуляторов, в принципе он для этого и предназначен. Автогенераторы имеют встроенное реле-регулятор напряжения, что избавляет от необходимости покупать дополнительные стабилизаторы или преобразователи.

Однако автолюбители знают, что на низких холостых оборотах, примерно 500-1000 Об/мин мощность такого генератора мала, и он не обеспечивает должного тока для заряда аккумулятора. Это приводит к необходимости подключения к ветроколесу через редуктор или ременную передачу.

Отрегулировать количество оборотов при нормальной для ваших широт скорости ветра можно с помощью подбора передаточного числа либо с помощью правильно спроектированного ветроколеса.

Полезные советы


Пожалуй, самая удобная для повторения конструкция мачты для ветряка - изображена на картинке. Такая мачта растягивается на тросах, закрепленных на держателях в земле, что обеспечивает устойчивость.

Важно: Высота мачты должна быть как можно большей примерно 10 метров. На большей высоте ветер сильнее, потому что для него нет препятствий в виде наземных сооружений, холмов и деревьев. Ни в коем случае не устанавливайте ветрогенератор на крыше своего дома. Резонансные колебания крепежных конструкций могут вызвать разрушение его стен.

Позаботьтесь о надёжности несущей мачты, ведь конструкция ветряка на базе такого генератора значительно утяжеляется и представляет собой уже довольно серьезное решение, которое может осуществлять автономное электроснабжение дачи с минимальным набором электрических приборов. Устройства, которые работают от 220 Вольт можно запитать от инвертора 12-220 В. Самый распространённый вариант такого инвертора - .

Лучше использовать генераторы от дизельных, в т.ч. грузовых автомобилей, ведь они рассчитаны для работы на низких оборотах. В среднем дизельный двигатель крупного грузовика работает в диапазоне оборотов от 300 до 3500 об/мин.

Современные генераторы выдают 12 или 24 Вольт, а ток в 100 Ампер - уже давно стал нормальным. Проведя несложные вычисления можно определить, что такой генератор максимально выдаст вам до 1 кВт мощности, а генератор от жигулей (12 В 40-60 А) 350-500 Вт, что уже довольно приличная цифра.

Каким должно быть ветроколесо для самодельной ВЭУ?

Я упомянул в тексте о том, что ветроколесо должно быть большим и с большим количеством лопастей, на самом деле это не так. Это утверждение было справедливо для тех микро-генераторов, которые не претендуют на звание серьезных электрических машин, а скорее экземпляры для ознакомления и досуга.

На самом деле проектирование, расчёт и создание ветроколеса - это очень сложная задача. Энергия ветра будет использоваться рациональнее, если оно выполнено очень точно и идеально выведен «авиационный» профиль, при этом он должен быть установлен с минимальным углом к плоскости вращения колеса.

Реальная мощность ветроколес с одинаковым диаметром и разным количеством лопастей - одинаково, разница лишь в скорости их вращения. Чем меньше крыльев - тем больше оборотов в минуту, при том же ветре и диаметре. Если вы собираетесь добиться максимальных оборотов вы должны максимально точно смонтировать крылья с минимальным углом к плоскости их вращения.

Ознакомьтесь с таблицей из книги 1956 года «Самодельная ветроэлектростанция» изд. ДОСААФ Москва. На ней показана связь диаметра колеса, мощности и оборотов.

В домашних условиях эти теоретические выкладки дают мало толку, любители делают ветроколеса из подручных средств, в ход идёт:

  • Листы металла;

    Пластиковые канализационные трубы.

Собрать своими руками быстроходное 2-4 лопастное ветроколесо можно из канализационных труб, кроме них нужна ножовка или любой другой режущий инструмент. Использование этих труб обусловлено их формой, после обрезки они имеют вогнутую форму, что обеспечивает высокую отзывчивость к потокам воздуха.

После обрезки их закрепляют с помощью БОЛТОВ на металлической, текстолитовой или фанерной болванке. Если вы собрались делать её из фанеры - лучше переклейте и скрутите саморезами с обеих сторон несколько слоев фанеры, тогда у вас получится добиться жесткости.

Вот идея двух лопастной цельной крыльчатки для генератора из шагового двигателя.

Выводы

Вы можете сделать ветроэлектрическую установку начиная от малых мощностей - единиц Ватт, для питания отдельных светодиодных светильников, маячков и мелкой техники, до хороших значений мощности в единицах киловатт, накапливать энергию в аккумуляторе, использовать её в исходном виде или преобразовывать до 220 Вольт. Стоимость такого проекта будет зависеть от ваших потребностей, пожалуй, самым дороги элементом является мачта и аккумуляторы, может оказаться в пределах 300-500 долларов.

Похожие статьи