Обследование станции катодной защиты. Правила контроля и учета работы электрохимической защиты подземных коммуникаций от коррозии. Электрические измерения на газопроводе

Порядок приемки и ввода в эксплуатацию устройств электрохимической защиты от коррозии

Установки электрохимической защиты (ЭХЗ) вводят в эксплуатацию после завершения пусконаладочных работ и испытания на стабильность в течение 72 ч.

Электрозащитные установки принимает в эксплуатацию комиссия, в состав которой входят представители следующих организаций: заказчика; проектной (по необходимости); строительной; эксплуатационной, на баланс которой будет передана построенная электрозащитная установка; конторы "Подземметаллзащита" (службы защиты); местных органов Ростехнадзора; городских (сельских) электросетей.

Данные проверки готовности объектов к сдаче заказчик сообщает телефонограммой организациям, входящим в состав приемной комиссии.

Заказчик предъявляет приемной комиссии: проект на устройство электрической защиты; акты на выполнение строительно-монтажных работ; исполнительные чертежи и схемы с нанесением зоны действия защитной установки; справку о результатах наладки защитной установки; справку о влиянии защитной установки на смежные подземные сооружения; паспорта электрозащитных устройств; акты на приемку электрозащитных установок в эксплуатацию; разрешение на подключение мощности к электрической сети; документацию о сопротивлении изоляции кабелей и растеканию защитного заземления.

После ознакомления с исполнительной документацией приемная комиссия проверяет выполнение запроектированных работ - средств и узлов электрозащиты, в том числе изолирующих фланцевых соединений, контрольно-измерительных пунктов, перемычек и других узлов, а также эффективность действия установок электрохимической защиты. Для этого измеряют электрические параметры установок и потенциалы трубопровода относительно земли на участке, где в соответствии с проектом зафиксирован минимальный и максимальный защитный потенциал.

Электрозащитную установку вводят в эксплуатацию только после подписания комиссией акта о приемке.

Если отступления от проекта или недовыполнение работ влияют на эффективность защиты либо противоречат требованиям эксплуатации, то они должны быть отражены в акте с указанием сроков их устранения и представления к повторной приемке.

Каждой принятой установке присваивают порядковый номер и заводят специальный паспорт электрозащитной установки, в которой заносят все данные приемочных испытаний.

При приемке в эксплуатацию изолирующих фланцев представляют: заключение проектной организации на установку изолирующих фланцев; схему трассы газопровода с точными привязками мест установки изолирующих фланцев (привязки изолирующих фланцев могут быть даны на отдельном эскизе); заводской паспорт изолирующего фланца (если последний получен с завода).

Приемку в эксплуатацию изолирующих фланцев оформляют справкой. Принятые в эксплуатацию изолирующие фланцы регистрируют в специальном журнале.

При приемке в эксплуатацию шунтирующих электроперемычек представляют заключение проектной организации на установку электрической перемычки с обоснованием ее типа; исполнительный чертеж перемычки на подземных сооружениях с привязками мест установки; акт на скрытые работы со ссылкой на соответствие проекту конструктивного исполнения электроперемычки.

При приемке в эксплуатацию контрольных проводников и контрольно-измерительных пунктов представляют исполнительный чертеж с привязками, акт на скрытые работы со ссылкой на соответствие проекту конструктивного исполнения контрольных проводников и контрольно-измерительных пунктов.

Электрические измерения на газопроводе

Электрические коррозионные измерения на подземных стальных трубопроводах выполняют для определения степени опасности электрохимической коррозии подземных трубопроводов и эффективности действия электрохимической защиты.

Коррозионные измерения осуществляются при проектировании, строительстве и эксплуатации противокоррозионной защиты подземных стальных трубопроводов. Показатели коррозионной активности грунта по отношению к стали приведены в табл.1.

Таблица 1

Показатели коррозионной активности грунта по отношению к стали

Степень коррозионной активности

Удельное электрическое сопротивление грунта, Ом-м

Потери массы образца, г

Средняя плотность поляризующего тока, мА/см

Низкая

Средняя

Высокая


Критерием опасности коррозии, вызываемой блуждающими токами, является наличие положительной или знакопеременной разности потенциалов между трубопроводом и землей (анодной или знакопеременной зоны). Опасность коррозии подземных трубопроводов блуждающими токами оценивают на основании электрических измерений. Основным показателем, определяющим опасность коррозии стальных подземных трубопроводов под действием переменного тока электрифицированного транспорта, является смещение разности потенциалов между трубопроводом и землей в отрицательную сторону не менее чем на 10 мВ по сравнению со стандартным потенциалом трубопровода.

Защита подземных стальных трубопроводов от почвенной коррозии и коррозии, вызываемой блуждающими токами, осуществляется путем их изоляции от контакта с окружающим грунтом и ограничения проникновения блуждающих токов из окружающей среды и путем катодной поляризации металла трубопровода.

Для уменьшения влияния коррозии рационально выбирают трассу трубопровода, а также используют различные типы изоляционных покрытий и специальные способы прокладки газопроводов.

Целью коррозионных измерений при проектировании защиты вновь сооружаемых подземных трубопроводов является выявление участков трасс, опасных в отношении подземной коррозии. При этом определяют коррозионную активность грунта и значения блуждающих токов в земле.

При проектировании защиты уложенных в землю трубопроводов проводят коррозионные измерения с целью выявления участков, находящихся в зонах коррозионной опасности, вызванной агрессивностью грунта или влиянием блуждающих токов. Определяют коррозионную активность грунта, измеряя разность потенциалов между трубопроводом и землей, а также определяя значение и направление тока в трубопроводе.

Коррозионные измерения при строительстве подземных трубопроводов делятся на две группы: проводимые при производстве изоляционно-укладочных работ и проводимые при монтажных работах и наладке электрохимической защиты. При монтажных работах и наладке электрохимической защиты измерения проводят для определения параметров установок электрохимической защиты и контроля эффективности их действия.

В сети действующих газопроводов измерение потенциалов проводят в зонах действия средств электрозащиты подземных сооружений и в зонах влияния источников блуждающих токов два раза в год, а также после каждого значительного изменения коррозионных условий (режима работы электрозащитных установок, системы электроснабжения электрифицированного транспорта). Результаты измерения фиксируют в картах-схемах подземных трубопроводов. В остальных случаях измерения производят один раз в год.

Удельное сопротивление грунта определяют с помощью специальных измерительных приборов М-416, Ф-416 и ЭГТ-1М.

Для измерения напряжений и тока при коррозионных измерениях используют показывающие и регистрирующие приборы. Вольтметры применяют с внутренним сопротивлением не менее 20 Ом на 1 В. При проведении коррозионных измерений применяют неполяризующиеся медно-сульфатные электроды.

Медно-сульфатный неполяризующийся электрод ЭН-1 состоит из пористой керамической чашки и пластмассовой крышки, в которую ввинчивается медный стержень. В медном стержне сверху высверлено отверстие для присоединения вилки. Во внутреннюю плоскость электрода заливается насыщенный раствор медного купороса. Сопротивление электрода не более 200 Ом. В футляре обычно размещают два электрода.

Неполяризующийся медно-сульфатный электрод сравнения НН-СЗ-58 (рис.1) состоит из неметаллического корпуса 3 с деревянной пористой диафрагмой 5 , крепящейся к корпусу с кольцом 4 . В верхней части сосуда через резиновую пробку 1 проходит медный стержень 2 , имеющий на наружном конце зажим (гайку с шайбами) для подключения соединительного провода.

Рис.1. Неполяризующийся медно-сульфатный электрод сравнения НН-СЗ-58:

1 - резиновая пробка; 2 - медный стержень; 3 - корпус; 4 - кольцо; 5 - диафрагма


Переносной неполяризующийся медно-сульфатный электрод сравнения МЭП-АКХ состоит из пластмассового корпуса с пористым керамическим дном и навинчивающейся крышкой с впрессованным в нее медным электродом. Электрод выпускают с различной формой пористого дна - плоской, конической или полусферической. Материалы, из которых изготовлены электроды МЭП-АКХ, и заливаемый в них электролит позволяют проводить измерения при температуре до -30 °С. Электролит состоит из двух частей этиленгликоля и трех частей дистиллированной воды. В теплое время года в электродах может быть использован электролит из обычного насыщенного раствора сульфата меди.

Стальные электроды представляют собой стержень длиной 30-35 см, диаметром 15-20 мм. Конец электрода, забиваемый в землю, заточен в виде конуса. На расстоянии 5-8 см от верхнего конца электрод просверлен, и в отверстие запрессован болт с гайкой для подключения измерительных приборов.

Неполяризующийся медно-сульфатный электрод длительного действия с датчиком электрохимического потенциала используется в качестве электрода сравнения при измерениях разности потенциалов между трубопроводом и землей, а также поляризованного потенциала стального трубопровода, защищаемого методом катодной поляризации.

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО

АКЦИОНЕРНАЯ КОМПАНИЯ
ПО ТРАНСПОРТУ НЕФТИ «ТРАНСНЕФТЬ»

ОАО «АК «ТРАНСНЕФТЬ»

ТЕХНОЛОГИЧЕСКИЕ
РЕГЛАМЕНТЫ

ПРАВИЛА КОНТРОЛЯ И УЧЕТА РАБОТЫ
ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ
ПОДЗЕМНЫХ КОММУНИКАЦИЙ ОТ КОРРОЗИИ

Москва 2003

Регламенты, разработанные и утвержденные ОАО «АК «Транснефть», устанавливают общеотраслевые обязательные для исполнения требования по организации и выполнению работ в области магистрального нефтепроводного транспорта, а также обязательные требования к оформлению результатов этих работ.

Регламенты (стандарты предприятия) разрабатываются в системе ОАО «АК «Транснефть» для обеспечения надежности, промышленной и экологической безопасности магистральных нефтепроводов, регламентации и установления единообразия взаимодействия подразделений Компании и ОАО МН при ведении работ по основной производственной деятельности как между собой, так и с подрядчиками, органами государственного надзора, а также унификации применения и обязательного исполнения требований соответствующих федеральных и отраслевых стандартов, правил и иных нормативных документов.

ПРАВИЛА КОНТРОЛЯ И УЧЕТА РАБОТЫ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ПОДЗЕМНЫХ КОММУНИКАЦИЙ ОТ КОРРОЗИИ

1. ЦЕЛЬ РАЗРАБОТКИ

Основной задачей разработки является установление единого порядка контроля и учета работы средств ЭХЗ на уровне ОАО МН и его производственных подразделений с целью:

Контроля за эффективностью работы установок катодной защиты, защищенностью нефтепровода и своевременного принятия мер по устранению неисправностей оборудования ЭХЗ и корректировки режимов работы;

Учета простоя ЭХЗ за межконтрольный период времени;

Общей оценки уровня надежности и структурного анализа отказов;

Оценки качества работы служб, эксплуатирующих средства ЭХЗ, в части повышения надежности работы и оперативности устранения отказов средств ЭХЗ и питающих ВЛ;

Разработки и внедрения мероприятий по повышению надежности ЭХЗ и питающих ВЛ.

2. ПРОИЗВОДСТВО РАБОТ ПО КОНТРОЛЮ И УЧЕТУ РАБОТЫ ЭХЗ

2.1. Из состава персонала службы эксплуатации средств ЭХЗ подразделения назначается лицо, ответственное за контроль и учет работы средств ЭХЗ.

2.2. Контроль за работой средств ЭХЗ и эффективностью защиты по трассе проводится:

С выездом на трассу эксплуатационного персонала;

С помощью средств дистанционного контроля (линейной телемеханики).

2.3. Контроль за работой средств ЭХЗ с применением линейной телемеханики производится ежедневно лицом, ответственным за контроль и учет средств ЭХЗ. Данные контроля: величина тока СКЗ (СДЗ), величина напряжения на выходе СКЗ, величина защитного потенциала в точке дренажа СКЗ (СДЗ) фиксируются ответственным лицом в журнале эксплуатации средств ЭХЗ.

2.4. Контроль за работой станций катодной защиты (СКЗ)

2.4.1. Контроль за работой СКЗ с выездом на трассу осуществляется:

Два раза в год на СКЗ, обеспеченных дистанционным контролем, позволяющим контролировать параметры СКЗ, указанные в п. ;

Два раза в месяц на СКЗ, не обеспеченных дистанционным контролем;

Четыре раза в месяц на СКЗ, не обеспеченных дистанционным контролем, в зоне действия блуждающих токов.

2.4.2. При контроле параметров катодной защиты производят:

Снятие показаний величины силы тока и напряжения на выходе станций катодной защиты;

Снятие показаний прибора суммарного времени работы под нагрузкой СКЗ и показаний счетчика активной электроэнергии;

2.4.3. При контроле технического состояния СКЗ производят:

Очистку корпуса СКЗ от пыли и грязи;

Проверку состояния ограждений и знаков электробезопасности;

Приведение в надлежащий вид территории СКЗ.

2.4.4. Время наработки СКЗ за межконтрольный период по показаниям счетчика наработки времени определяется как разность показаний счетчика на момент проверки и показаний на момент предыдущей проверки СКЗ.

2.4.5. Время наработки СКЗ по показаниям счетчика активной энергии определяется как отношение величины потребленной за межконтрольный период электроэнергии к среднесуточному потреблению электроэнергии за предыдущий межконтрольный период.

2.4.6. Время простоя СКЗ определяется как разность времени межконтрольного периода и времени наработки СКЗ.

2.4.7. Данные контроля параметров, состояния и времени простоя СКЗ заносятся в полевой журнал эксплуатации.

2.4.7. Отдельно данные по простоям СКЗ заносятся в журнал учета отказов средств ЭХЗ.

2.5. Контроль за работой станций дренажной защиты (СДЗ)

2.5.1. Контроль за работой СДЗ с выездом на трассу осуществляется:

Два раза в год на СДЗ, обеспеченных дистанционным контролем, позволяющим контролировать параметры, указанные в п. ;

Четыре раза в месяц на СДЗ, не обеспеченных дистанционным контролем.

2.5.2. При контроле параметров дренажной защиты производят:

Измерение среднечасовой силы тока дренажа в период максимальной и минимальной нагрузок источника блуждающих токов;

Измерения защитного потенциала в точке дренажа.

2.5.3. При контроле технического состояния СДЗ производят:

Внешний осмотр всех элементов установки с целью обнаружения видимых дефектов и механических повреждений;

Проверку контактных соединений;

Очистку корпуса СДЗ от пыли и грязи;

Проверку состояния ограждения СДЗ;

Приведение в надлежащий вид территории СДЗ.

2.5.4. Контролируемые параметры и отказы СДЗ фиксируются в полевом журнале эксплуатации СДЗ. Отказы СДЗ фиксируются также в журнале отказов средств ЭХЗ.

2.6. Контроль за работой установок протекторной защиты

2.6.1. Контроль за работой установок протекторной защиты производят 2 раза в год.

2.6.2. При этом производят:

Измерение силы тока протекторной установки;

Измерение защитного потенциала в точке дренажа протекторной установки.

2.6.3. При контроле технического состояния протекторной установки производят:

- проверку наличия и состояния контрольно-измерительных пунктов в местах присоединения протекторов к нефтепроводу;

Проверку контактных соединений.

2.6.4. Данные контроля протекторных установок заносят в паспорт прожекторной установки.

2.7. Контроль защищенности нефтепровода в целом производят сезонными замерами защитных потенциалов в контрольно-измерительных пунктах по трассе нефтепроводов.

2.7.1. Измерения производятся не реже двух раз в год в период максимального увлажнения почвы:

2.7.2. Допускается производить измерения 1 раз в год, если:

Производится дистанционный контроль установок ЭХЗ;

Производится контроль защитного потенциала не реже 1 раза в 3 месяца в наиболее коррозионно-опасных точках трубопровода (имеющих наименьший защитный потенциал), расположенных между установками ЭХЗ.

Если период положительных среднесуточных температур не менее 150 дней в году.

2.7.3. В коррозионно-опасных местах, определяемых согласно п. 6.4.3 . , необходимо проводить контроль защищенности измерением защитного потенциала методом выносного электрода не реже 1 раза в 3 года согласно предварительно составленного графика проведения замеров.

3. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ.
АНАЛИЗ НАДЕЖНОСТИ ОБОРУДОВАНИЯ ЭХЗ

3.1. По результатам контроля за работой ЭХЗ подразделениями ОАО МН:

3.1.1. Ежемесячно до 5 числа, следующего за отчетным месяцем, в ОАО МН представляется отчет об отказах средств ЭХЗ (форма ).

3.1.2. Ежеквартально до 5 числа, следующего за кварталом месяца:

Определяется коэффициент использования установок катодной защиты, дающий интегральную характеристику надежности средств ЭХЗ и определяемый как отношение суммарного времени наработки всех установок катодной защиты к нормативному времени наработки за квартал. Данные заносятся в форму ;

Проводится анализ причин отказов средств ЭХЗ по данным формы ;

Определяются мероприятия для оперативного устранения наиболее частых причин отказов в последующие периоды эксплуатации;

Заполняется форма суммарного учета простоев (форма ), определяется количество СКЗ, простоявших более 80 часов в квартал;

В соответствии с п. 6.4.5 определяется защищенность каждого нефтепровода по времени.

В соответствии с п. 6.4.5 определяется защищенность каждого нефтепровода по протяженности;

Для общей оценки оперативности устранения отказов определяется среднее время простоя на одну СКЗ (отношение общего времени простоя СКЗ к количеству отказавших СКЗ);

Определяется количество СКЗ, простоявших более 10 суток в год (форма ).

3.2. По результатам представленных подразделениями данных службой ЭХЗ ОАО МН:

3.2.1. Ежемесячно до 10 числа направляется в АК «Транснефть» анализ нарушений в работе электротехнического оборудования с данными по отказам СКЗ;

3.2.2. Ежеквартально до 10 числа, следующего за кварталом месяца, определяется в целом по нефтепроводам ОАО:

Коэффициент использования установок катодной защиты (форма );

Анализ причин отказов (форма );

Количество СКЗ, простоявших более 80 часов в квартал (форма );

Определяется защищенность нефтепроводов по времени.

Определяется защищенность нефтепроводов по протяженности;

Определяется среднее время простоя одной СКЗ;

Количество СКЗ, простоявших более 10 суток в год.

3.3. Ежегодно в ОАО ВМН разрабатываются мероприятия, направленные на повышение надежности работы оборудования ЭХЗ и включаются в план капитального ремонта и реконструкции.


Приложение 1

Форма 1

Отчёт об отказах средств ЭХЗ нефтепровода

______________ _______ за_____________ месяц 200__ г.

№ СКЗ

км по трассе

Тип СКЗ, СДЗ

Суточное потребление эл. эн., кВт.час.

Дата осмотра перед отказом

Показания счётчика эл. энергии (моточас.) перед отказом

Показания счётчика эл. энергии (моточас.) на момент восстановления

Дата выхода из строя

Дата восстановления

Простой (сут.)

Причина выхода из строя

Приложение 2

Форма 2

Анализ
простоев
средств ЭХЗ за______квартал 2000 г.

Код отказа

Причина простоев

Подразд. 1

Подразд. 2

Подразд. 3

Подразд. 4

Подразд. 5

AO MH

Кол-во СКЗ

Прост (сут.)

Кол-во СКЗ

Прост (сут.)

Кол-во СКЗ

Прост (сут.)

Кол-во СКЗ

Прост. (сут.)

Кол-во СКЗ

Прост. (сут.)

Кол-во СКЗ

Прост. (сут.)

Неисправности питающих линий

Кор. замык. на ВЛ

6,00

28,00

13,00

47,00

Падение деревьев

15,00

3,00

18,00

Разруш. изолятор.

15,00

15,00

Поломка опор

10,00

10,00

Обрыв проводов

0,00

Откл. ВЛ стор. орган.

0,00

Расч. трассы

2,00

7,00

9,00

В/в каб. вставка

0,00

Ветх. сост. ВЛ

0,00

Хищения элем. ВЛ

3,00

2,00

10,00

15,00

Неиспр. пит. КЛ

0,00

Неисправн. ОМП

0,00

Неисп. в/в разрядн.

0,00

Рем. ячеек ЗРУ

13,00

9,00

22,00

Неисп. в/в предохр.

0,00

Откл. для врезки

17,00

12,00

11,00

13,00

53,00

Неиспр. РЛНД

0,00

Откл. для наладки

10,00

2,00

12,00

Итого по причине неиспр. ВЛ ( t пр.ВЛ )

66,00

29,00

48,00

40,00

18,00

201,00

118,00

k пр.ВЛ = t пр.ВЛ / N отк. ВЛ

1,83

1,81

2,00

1,25

1,80

1,70

Неисправности элементов СКЗ

Неиспр. анодных лин.

2,00

1,00

2,00

1,00

Неиспр. ан. заземл.

0,00

0,00

Неипр. тр-ра СКЗ

1,00

1,00

1,00

1,00

Неиспр. сил. вент.

2,00

1,00

2,00

1,00

Неиспр. бл. управл.

1,00

1,00

1,00

1,00

Отказ пуск.-р e г. апп.

1,00

1,00

1,00

1,00

Неиспр. дрен. каб.

0,00

0,00

Хищен. эл-тов СКЗ

3,00

6,00

2,00

9,00

3,00

Откл. при кап. ремонте

3,00

2,00

5,00

7,00

8,00

9,00

0,00

0,00

0,00

0,00

0,00

Итого по причине отк. СКЗ и их эл. (t пр.СКЗ )

3,00

2,00

5,00

2

7,00

3,00

7,00

8,00

2,00

2,00

24,00

17,00

k пр.СКЗ = t пр.СКЗ / N отк. СКЗ

1,50

2,50

2,33

0,88

1,00

1,41

Всего:

69,00

38

34,00

18

55,00

27

47,00

40

20,00

12

225,00

135,00

k отк. общ. = t отк. общ. /N отк. общ.

1,82

1,89

2,04

1,18

1,67

1,67

K н = t ф.нар. / t нормат.

0,99

0,99

0,99

0,99

0,99

0,99

t нормат . = N*T

11921,0

9009,0

10010,0

6279,0

3185,0

40404,0

t прост . = t пр . СКЗ + t пр . ВЛ

69,00

63,00

103,00

47,00

20,00

225,00

t ф.нар. = t нормат. - t прост.

11852

8946

9907

6232

3165

40179

N - кол-во СКЗ

131

99

110

69

35

444

Т - время наработки

91

91

91

91

91

91

Средний простой СКЗ (сут.):

0,51

Приложение 3

Форма 3

Расчёт времени простоев СКЗ за 2000 год

№ п/п

км установки

Тип УКЗ

Простой УКЗ (в сутках) по месяцам 2000 года

за год

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

прост (сут)

кол отк.

Нефтепровод, участок

1688

ТСКЗ-3.0

1

3

1

2

1700

ТСКЗ-3.0

1

3

1

2

1714

ТСКЗ-3.0

0

1718 Дубники

0

1727

ПДВ-1.2

1

1

1

5

2

1739

ТСКЗ-3.0

1

1

1

5

3

18

5

1750

ТСКЗ-3.0

1

1

1

5

3

18

5

1763

ТСКЗ-3.0

1

1

1

5

3

18

5

1775

ТСКЗ-3.0

0

1789

ТСКЗ-3.0

0


Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило ~ 220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • 0 Рубрика: . Вы можете добавить в закладки.

8.1 Металлические сооружения МН (линейная часть, технологические внутриплощадочные трубопроводы, резервуары, силовые кабели, кабели связи) подлежат защите от коррозии под действием природных и технологических сред и от действия блуждающих токов.

8.2 В состав средств защиты металлических сооружений от коррозии и блуждающих токов входят:

Защитные покрытия (лакокрасочные материалы, нефтебитумные покрытия, полимерные пленки и материалы);

Устройства по созданию катодной поляризации на подземных металлических сооружениях с сопутствующими элементами (анодные заземления, соединительные провода и кабели, соединительные перемычки между параллельно проходящими трубопроводами, контрольно-измерительные колонки, электроды сравнения, блоки совместной защиты);

Дренажные станции (СДЗ), кабельные линии подключения к источнику блуждающих токов.

8.3 Для обеспечения эффективной и надежной работы средств электрохимической защиты в составе ОАО магистральных нефтепроводов организуется производственная служба ЭХЗ.

8.4 Структура, состав, оснащенность службы ЭХЗ, определяется положением, утвержденным руководителем ОАО МН.

8.5 Служба ЭХЗ организует свою работу в соответствии с графиком ППР, требованиями ГОСТ Р 51164, ГОСТ 9.602, ПЭЭП и Правил техники безопасности при эксплуатации электроустановок потребителей и Положения о службе ЭХЗ и настоящих Правил.

8.6 Квалификационная группа обслуживающего персонала должна соответствовать требованиям Правил техники безопасности при эксплуатации электроустановок потребителей.

8.7 Периодичность проверки работы средств ЭХЗ:

Два раза в год на установках, обеспеченных дистанционным контролем и на установках протекторной защиты;

Два раза в месяц на установках, не обеспеченных дистанционным контролем;

Четыре раза в месяц на установках, находящихся в зонах действия блуждающих токов и не обеспеченных дистанционным контролем.

8.8.При проверке работы установок ЭХЗ проводят измерение и фиксирование следующих показателей:

Напряжения и тока на выходе СКЗ, потенциала в точке дренажа;

Суммарного времени наработки СКЗ под нагрузкой и потребление активной энергии за прошедший период;

Среднечасового тока дренажа и защитного потенциала в точке дренажа в период минимальной и максимальной нагрузки источника блуждающих токов;

Потенциала и тока в точке дренажа протекторных установок.

Данные показатели фиксируются в журнале эксплуатации средств ЭХЗ.

8.9 Измерение защитных потенциалов на МН на всех контрольно-измерительных пунктах проводится два раза в год. При этом внеочередные измерения проводятся на участках, где произошло изменение:

Схем и режимов работы средств ЭХЗ;

Режимов работы источников блуждающих токов;

Схем прокладки подземных металлических сооружений (укладка новых, демонтаж старых).

8.10 Электрохимическая защита должна обеспечивать в течении всего срока эксплуатации непрерывную во времени катодную поляризацию трубопровода на всем протяжении не меньше минимального (минус 0,85 В) и не больше максимального (минус 3,5 В) защитных потенциалов (приложение Е).

8.11 Проектирование новых или реконструкция действующих на МН средств ЭХЗ должны проводиться с учетом условий прокладки (эксплуатации) трубопровода, данных о коррозионной активности грунтов, требуемого срока службы сооружения, технико-экономических расчетов, требований НД.

8.12 Приемка в эксплуатацию законченных строительством (ремонтом) средств ЭХЗ должна проводиться согласно требованиям, указанным в разделе 2 настоящих Правил.

8.13 Сроки включения средств электрохимической защиты с момента укладки участков подземного трубопровода в грунт должны быть минимальными и не превышать одного месяца (при ремонтах и регламентных работах не более 15 суток).

Дренажная защита должна включаться в работу одновременно с укладкой участка трубопровода в грунт, в зоне действия блуждающих токов.

8.14 Защиту металлических сооружений МН от действия агрессивных составляющих товарной нефти и подтоварной воды, защиту от внутренней коррозии осуществляет служба ЭХЗ ОАО МН.

8.15 Контроль за сохранностью на трассе средств ЭХЗ должна организовать и вести служба эксплуатации линейной части МН.

8.16 На действующих нефтепроводах вскрытие трубопровода, приварку катодных, дренажных выводов и КИП должна проводить служба эксплуатации нефтепровода.

8.17 При ремонте нефтепровода с заменой изоляции, восстановление узлов подключения средств ЭХЗ (КИП, перемычки, СКЗ, СДЗ) к трубопроводу должна выполнять организация, ведущая ремонт изоляции, в присутствии представителя службы ЭХЗ.

8.18 Заключение о необходимости усиления (ремонта) средств ЭХЗ до полной замены (ремонта) изоляции трубопровода на основании электрометрических измерений, визуального осмотра состояния трубопровода и изоляции в наиболее опасных местах выдается службой ЭХЗ (при необходимости привлекаются представители научно-исследовательских организаций).

8.19 После укладки и засыпки законченных строительством или ремонтом участков трубопровода МН служба ЭХЗ должна провести определение сплошности изоляционного покрытия.

При обнаружении искателями повреждения дефектов в покрытии – участки с дефектами должны быть вскрыты, изоляция отремонтирована.

8.20 Для контроля за состоянием защитного покрытия и работой средств ЭХЗ каждый магистральный трубопровод должен быть оснащен контрольно-измерительными пунктами:

На каждом километре нефтепровода;

Не реже 500 м при прохождении нефтепровода в зоне действия блуждающих токов или наличия грунтов с высокой коррозионной активностью;

На расстоянии 3-х диаметров трубопровода от точек дренажа установок ЭХЗ и от электрических перемычек;

У водных и транспортных переходов с обеих сторон границы перехода;

У задвижек;

У пересечений с другими металлическими подземными сооружениями;

В зоне культурных и орошаемых земель (арыки, каналы, искусственные образования).

При многониточной системе трубопроводов КИП должны установить на каждом трубопроводе на одном поперечнике.

8.21 На вновь построенных и реконструируемых МН должны быть установлены электроды для контроля за уровнем поляризационного потенциала и для определения скорости коррозии без защиты.

8.22 Комплексное обследование МН с целью определения состояния противокоррозионной защиты должно проводиться на участках высокой коррозионной опасности не реже одного раза в 5 лет, а на остальных участках – не реже одного раза в 10 лет в соответствии с нормативными документами.

8.23 При комплексном обследовании противокоррозионной защиты трубопроводов должно быть определено состояние изоляционного покрытия (сопротивление изоляции, места нарушения ее сплошности, изменение ее физико-механических свойств за время эксплуатации), степень электрохимической защиты (наличие защитного потенциала на всей поверхности трубопровода) и коррозионное состояние (по результатам электрометрии, шурфовки).

8.24 По всем МН на коррозионно-опасных участках трубопроводов и на участках, имеющих минимальные значения защитных потенциалов дополнительные измерения защитных потенциалов должны проводиться с помощью выносного электрода сравнения, в том числе с использованием метода отключения, непрерывно или с шагом не более 10 м не менее одного раза в 3 года, в период максимального увлажнения грунта, а также дополнительно в случаях изменения режимов работы установок катодной защиты и при изменениях, связанных с развитием системы электрохимической защиты, источников блуждающих токов и сети подземных трубопроводов с целью оценки степени катодной защищенности и состояния изоляции трубопровода.

8.25 Противокоррозионное обследование должно проводиться производственными лабораториями ЭХЗ при ОАО МН или силами специализированных организаций, имеющих лицензии Госгортехнадзора на проведение данных работ.

8.26 Все обнаруженные при обследовании повреждения защитного покрытия должны быть точно привязаны к трассе нефтепровода, учтены в эксплуатационной документации и устранены в запланированные сроки.

8.27 Электрохимическая защита кожухов трубопроводов под авто- и железными дорогами выполняется самостоятельными защитными установками (протекторами). В процессе эксплуатации трубопровода следует проводить контроль наличия электрического контакта между кожухом и трубопроводом. При наличии электрического контакта его необходимо устранить.

8.28 Порядок организации и проведения работ по техническому обслуживанию и ремонту средств ЭХЗ определяется нормативно-технической документацией, составляющей документальную основу технического обслуживания и ремонта установок ЭХЗ.

Работы по техническому обслуживанию и текущему ремонту средств ЭХЗ должны быть организованы и проведены по эксплуатационной документации.

Работы по капитальному ремонту средств ЭХЗ должны быть организованы и проведены по ремонтной и технической документации.

8.29 Техническое обслуживание средств ЭХЗ в эксплуатационных условиях должно заключаться:

В периодическом техническом осмотре всех доступных для внешнего наблюдения конструктивных элементов средств ЭХЗ;

В снятии показаний приборов и регулировке потенциалов;

В своевременном регулировании и устранении мелких неисправностей.

8.30 Капитальный ремонт - ремонт, осуществляемый в процессе эксплуатации для гарантированного обеспечения работоспособности средств ЭХЗ до следующего планового ремонта и состоящий в устранении неисправности и полном или близким к полному восстановлению технического ресурса средств ЭХЗ в целом, с заменой или восстановлением любых его составных частей их наладкой и регулировкой. В объем капитального ремонта должны входить работы, предусмотренные текущим ремонтом.

8.31 Сетевые катодные станции и дренажные установки должны капитально ремонтироваться в стационарных условиях, а на трассе должны производить замену вышедших из строя установок. Для этого в ОАО МН должен быть обменный фонд установок.

8.32 Анодные и защитные заземления, протекторные и дренажные установки, а также ЛЭП должны ремонтироваться бригадами ЭХЗ в трассовых условиях.

8.33 Результаты всех планово-предупредительных ремонтов должны заноситься в соответствующие журналы и паспорта установок ЭХЗ.

8.34 Нормы планово-предупредительного технического обслуживания и ремонта средств ЭХЗ приведены в приложении Ж.

8.35 Резервный фонд основных устройств служб ЭХЗ ОАО МН, выполняющих плановые мероприятия технической эксплуатации (в том числе капитальный ремонт) устройств ЭХЗ должен быть следующим:

Станции катодной защиты - 10 % от общего количества СКЗ на обслуживаемом участке, но не менее пяти;

Протекторы различных типов для протекторных установок - 10 % от общего количества протекторов, имеющихся на трассе, но не менее 50;

Электродренажные установки различных типов - 20 % от общего количества дренажных установок на обслуживаемом участке, но не менее двух;

Электроды различных типов для анодного заземления станций катодной защиты - 10 % от общего количества электродов анодных заземлений, имеющихся на участке, но не менее 50;

Блоки совместной защиты - 10 % от общего количества блоков, имеющихся на участке, но не менее пяти.

8.36 В состав технической документации службы ЭХЗ должны входить:

Проект ЭХЗ по магистральному нефтепроводу;

Протоколы измерений и испытаний изоляции;

План работы службы ЭХЗ;

Графики ППР и ТО;

Журнал эксплуатации средств ЭХЗ;

Журнал учета отказов ЭХЗ;

Журнал распоряжений;

Полевые журналы эксплуатации СКЗ и СДЗ;

Годовые графики измерений потенциалов по трубопроводам;

Дефектные ведомости на оборудование ЭХЗ;

Исполнительные чертежи на анодные заземления и схемы их обвязки;

Заводские инструкции на средства ЭХЗ;

Положение о службе ЭХЗ;

Должностные и производственные инструкции;

Инструкции по ТБ.

Документация по контролю состояния ЭХЗ и защитного покрытия подлежит хранению в течении всего периода эксплуатации МН.

размер шрифта

ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ ГАЗОРАСПРЕДЕЛИТЕЛЬНЫХ СИСТЕМ- ОСНОВНЫЕ ПОЛОЖЕНИЯ- ГАЗОРАСПРЕДЕЛИТЕЛЬНЫЕ СЕТИ И ГАЗОВОЕ ОБОРУДОВАНИЕ... Актуально в 2018 году

6.8. Техническое обслуживание и ремонт средств электрохимической защиты подземных стальных газопроводов от коррозии

6.8.1. Техническое обслуживание и ремонт средств электрохимической защиты подземных газопроводов от коррозии, контроль за эффективностью ЭХЗ и разработка мероприятий по предотвращению коррозионных повреждений газопроводов осуществляются персоналом специализированных структурных подразделений эксплуатационных организаций или специализированными организациями.

6.8.2. Периодичность выполнения работ по техническому обслуживанию, ремонту и проверке эффективности ЭХЗ устанавливается ПБ 12-529 . Разрешается совмещать измерения потенциалов при проверке эффективности ЭХЗ с плановыми измерениями электрических потенциалов на газопроводах в зоне действия средств ЭХЗ.

6.8.3. Техническое обслуживание и ремонт изолирующих фланцев и установок ЭХЗ производится по графикам, утверждаемым в установленном порядке техническим руководством организаций - владельцев электрозащитных установок. При эксплуатации средств ЭХЗ ведется учет их отказов в работе и времени простоя.

6.8.4. Техническое обслуживание катодных установок ЭХЗ включает в себя:

Проверку состояния контура защитного заземления (повторного заземления нулевого провода) и питающих линий. Внешним осмотром проверяется надежность видимого контакта проводника заземления с корпусом электрозащитной установки, отсутствие обрыва питающих проводов на опоре воздушной линии и надежность контакта нулевого провода с корпусом электрозащитной установки;

Осмотр состояния всех элементов оборудования катодной защиты с целью установления исправности предохранителей, надежности контактов, отсутствия следов перегревов и подгаров;

Очистку оборудования и контактных устройств от пыли, грязи, снега, проверку наличия и соответствия привязочных знаков, состояния коверов и колодцев контактных устройств;

Измерение напряжения, величины тока на выходе преобразователя, потенциала на защищаемом газопроводе в точке подключения при включенной и отключенной установки электрохимической защиты. В случае несоответствия параметров электрозащитной установки данным пусконаладки следует произвести регулировку ее режима работы;

Внесение соответствующих записей в эксплуатационном журнале.

6.8.5. Техническое обслуживание протекторных установок включает в себя:

Измерение потенциала протектора относительно земли при отключенном протекторе;

Измерение потенциала "газопровод-земля" при включенном и отключенном протекторе;

Величину тока в цепи "протектор - защищаемое сооружение".

6.8.6. Техническое обслуживание изолирующих фланцевых соединений включает в себя работы по очистке фланцев от пыли и грязи, измерении разности потенциалов "газопровод-земля" до и после фланца, падение напряжения на фланце. В зоне влияния блуждающих токов измерение разности потенциалов "газопровод-земля" до и после фланца следует производить синхронно.

6.8.7. Состояние регулируемых и нерегулируемых перемычек проверяют измерением разности потенциалов "сооружение-земля" в местах подключения перемычки (или в ближайших измерительных пунктах на подземных сооружениях), а также измерением величины и направления тока (на регулируемых и разъемных перемычках).

6.8.8. При проверке эффективности работы установок электрохимической защиты, кроме работ, выполняемых при техническом осмотре, производится измерение потенциалов на защищаемом газопроводе в опорных точках (на границах зоны защиты) и в точках, расположенных по трассе газопровода, через каждые 200 м в населенных пунктах и через каждые 500 м на прямолинейных участках межпоселковых газопроводов.

6.8.9. Текущий ремонт ЭХЗ включает в себя:

Все виды работ по техническому осмотру с проверкой эффективности работы;

Измерение сопротивления изоляции токоведущих частей;

Ремонт выпрямителя и других элементов схемы;

Устранение обрывов дренажных линий. При текущем ремонте оборудования ЭХЗ рекомендуется проводить его полную ревизию в условиях мастерских. На время ревизии оборудования ЭХЗ необходимо обеспечить защиту газопровода установкой оборудования из подменного фонда.

6.8.10. Капитальный ремонт установок ЭХЗ включает в себя работы, связанные с заменой анодных заземлителей, дренажных и питающих линий.

После капитального ремонта основное оборудование электрохимической защиты проверяется в работе под нагрузкой в течение времени, указанного заводом-изготовителем, но не менее 24 ч.

Похожие статьи